Skip to main content
Log in

Cauchy Problem for Degenerating Linear Differential Equations and Averaging of Approximating Regularizations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we consider the Cauchy problem for the Schrödinger equation. The generating operator L for this equation is a symmetric linear differential operator in the Hilbert space H = L 2(ℝd), d ∈ ℕ, degenerated on some subset of the coordinate space. To study the Cauchy problem when conditions of existence of the solution are violated, we extend the notion of a solution and change the statement of the problem by means of such methods of analysis of ill-posed problems as the method of elliptic regularization (vanishing viscosity method) and the quasisolutions method.

We investigate the behavior of the sequence of regularized semigroups \( \left\{{e}^{-i{\mathbf{L}}_nt},\ t>0\right\} \) depending on the choice of regularization {L n } of the generating operator L.

When there are no convergent sequences of regularized solutions, we study the convergence of the corresponding sequence of the regularized density operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, New York, 2001.

    Google Scholar 

  2. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications Inc., New York, 1993.

    MATH  Google Scholar 

  3. S. Albeverio, N. Korshunova, and O. Rozanova, “A probabilistic model associated with the pressureless gas dynamic,” Bull. Sci. Math., 137, No. 7, 902–922 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Springer, Berlin, 1987.

    MATH  Google Scholar 

  5. Yu. A. Alkhutov and V. V. Zhikov, “On the Hölder property of solutions of degenerate elliptic equations,” Dokl. Math., 63, No. 3, 368–373 (2001).

    Google Scholar 

  6. G. G. Amosov and V. Zh. Sakbaev, “On self-adjoint extensions of the Schrödinger operator with degeneration on a pair of half-lines and the corresponding Markov cocycles,” Math. Notes, 76, No. 3, 315–322 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Antontsev and S. Shmarev, “Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,” J. Math. Sci., 150, No. 5, 2289–2301 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. I. Aptekarev and Yu. G. Rykov, “A variational representation of solutions to a certain hyperbolic system of equations by using a logarithmic potential in the external field,” Dokl. Math., 74, No. 1, 477–479 (2006).

    Article  MATH  Google Scholar 

  9. A. A. Arsenyev, “Construction of a turbulent measure for the Navier–Stokes system of equations,” Mat. Sb., 101 (143), No. 2, 204–211 (1976).

  10. A. B. Bakushinskij and M. Yu Kokurin, Iterative Methods of Solution for Ill-posed Operator Equations with Smooth Operators [in Russian], URSS, Moscow, 2002.

    Google Scholar 

  11. A. V. Balakrishan, Applied Functional Analysis, Springer, New York–Heidelberg–Berlin, 1981.

    Google Scholar 

  12. M. N. Balashov and E. S. Polovinkin, Elements of Convex and Strongly Convex Analysis [in Russian], Fizmatlit, Moscow, 2007.

    Google Scholar 

  13. S. Banach, Course of Functional Analysis [in Russian], Radyanska Shkola, Kiev, 1948.

    Google Scholar 

  14. P. Baras and J. Goldstein, “The heat equation with a singular potential,” Trans. Am. Math. Soc., 284, No. 1, 121–139 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. K. Bari, “Biorthogonal systems and bases in Hilbert space,” Uch. Zap. Mosk. Gos. Univ., 4, No. 148, 69–107 (1951).

    MathSciNet  Google Scholar 

  16. Yu. M. Berezansky, Expansions in Terms of Eigenfunctions of Self-adjoint Operators, Naukova Dumka, Kiev, 1965.

    Google Scholar 

  17. F. A. Berezin and M. A. Shubin, The Schrödinger equation, Kluwer Academic Publishers, Dordrecht, 1991.

    Book  MATH  Google Scholar 

  18. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems. Vol. I, II, V.H. Winston & Sons, Washington; John Wiley & Sons, 1978, 1979.

  19. P. Billingslay, Convergence of Probability Measures, John Wiley & Sons, New York–London–Sydney–Toronto, 1968.

    Google Scholar 

  20. V. I. Bogachev, Measure Theory. Vol. I, Springer, Berlin, 2007.

  21. V. I. Bogachev, Measure Theory. Vol. II, Springer, Berlin, 2007.

  22. V. I. Bogachev, N. V. Krylov, and M. Rökner M, “Elliptic and parabolic equations for measures,” Russ. Math. Surv., 64, No. 6, 973–1078 (2009).

    Article  MATH  Google Scholar 

  23. N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics [in Russian], Akad. Nauk SSSR, Kiev, 1945.

    Google Scholar 

  24. N. N. Bogolyubov, “On some ergodic properties of continuous groups of transformations,” in: Selected Papers, Vol. 1, Naukova Dumka, Kiev, 561–569 (1969).

  25. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1. C∗ and W∗−Algebras, Symmetry Groups, Decomposition of States, Springer, New York, 1987.

  26. J. K.Brooks and N. Dinculeanu, “Lebesgue type spaces for vector integration, linear operators, weak completeness and weak compactness,” J. Math. Anal. Appl., 54, No. 2, 348–369 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Burbaki, Integration. Measures on Locally-Compact Spaces, Measures on Separable Spaces [in Russian], Nauka, Moscow, 1977.

  28. Ya. A. Butko, O. G Smolyanov, and R. L. Shilling, “Feynman formulae for Feller semigroups,” Dokl. Math., 82, No. 2, 679–683 (2010).

  29. A. L. Carey and F. A. Sukochev, “Dixmier traces and some applications in non-commutative geometry,” Russ. Math. Surv., 61, No. 6, 1039–1099 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. D. Chabakauri, “Optimization of the boundary control of vibrations on one endpoint with the other endpoint being fixed,” Differ. Equ., 37, No. 12, 1742–1750 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. G. Chentsov, Finitely Additive Measures and Relaxations of Extremal Problems, Consultants Bureau/ Plenum Publishing Corp., London, 1996.

    MATH  Google Scholar 

  32. Ph. Clement, H. J.A.M. Heijmans, S. Angenent, C. J. van Duijn, and B. de Pagter, Oneparameter Semigroups, North-Holland, Amsterdam, 1987.

    Google Scholar 

  33. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I, Springer, Berlin–Heidelberg–New York, 1992.

  34. G. F. Dell’Antonio, “On the limits of sequences of normal states,” Commun. Pure Appl. Math., 20, 413–429 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. P. Didenko, “A variational problem for equations of mixed type,” Differ. Equ., 13, 29–32 (1977).

    MathSciNet  MATH  Google Scholar 

  36. N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces, Wiley-Interscience, New York, 2000.

    Book  MATH  Google Scholar 

  37. R. J. Di Perna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math., 98, 511–547 (1989).

    Article  MathSciNet  Google Scholar 

  38. V. V. Dodonov, V. I. Man’ko, and V. D. Skarzhinsky, “Ambiguities of variational description of classical systems and the quantization problem,” Tr. Fiz. Inst. Akad. Nauk, 152, 37–89 (1983).

    Google Scholar 

  39. B. A. Dubovin, “Hamilton partial differential equations and Frobenius manifolds,” Usp. Mat. Nauk, 63, No. 6, 7–18 (2008).

    Article  Google Scholar 

  40. R. Edwards, Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York–Chicago–San Francisco–Toronto–London, 1969.

  41. G. G. Emch, Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, New York, 1972.

    MATH  Google Scholar 

  42. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations. Expository lectures from the CBMS regional conf., Loyola Univ. Chicago, June 27–July 1, 1988, AMS, Providence, 1990.

  43. G. Fichera, “On a unified theory of boundary-value problems for elliptic-parabolic equations of second order,” in: Boundary Probl. in Differ. Equations, Proc. Symp., Madison, April 20–22, 1959, 97–120 (1960).

  44. V. M. Filippov, V. M. Savchin, and S. G. Shorokhov, “Variational principles for nonpotential operators,” J. Math. Sci., 68, No. 3, 275–398 (1994).

    Article  MathSciNet  Google Scholar 

  45. J. Flachsmeyer and F. Terpe, “Some applications of the theory of compactifications of topological spaces and measure theory,” Russ. Math. Surv., 32, No. 5, 133–171 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. I. Freidlin, “On the Ito stochastic equations and degenerating elliptic equations,” Izv. Akad. Nauk SSSR. Ser. Mat. 26, 653–676 (1962).

    MathSciNet  Google Scholar 

  47. M. I. Freidlin, “Diffusion processes and a small parameter in elliptic equations with discontinuous coefficients,” Izv. Akad. Nauk SSSR. Ser. Mat., 29, 1005–1036 (1965).

    MathSciNet  MATH  Google Scholar 

  48. M. I. Freidlin, “Markov processes and differential equations,” Prog. Math., 3, 1–55 (1969).

    Google Scholar 

  49. M. Gadella, S. Kuru, and J. Negro, “Self-adjoint Hamiltonians with a mass jump: general matching conditions,” Phys. Lett. A., 362, 265–268 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  50. V. A. Galaktionov and I. V. Kamotski, “On nonexistence of Baras–Goldstein type for higherorder parabolic equations with singular potentials,” Trans. Am. Math. Soc., 362, No. 8, 4117–4136 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. A. Galaktionov and J. Vazquez, “Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equation,” Arch. Ration. Mech. Anal., 129, 225–244 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  52. I. M. Gelfand, “Abstract functions and linear operators,” Mat. Sb., 46, 235–286 (1938).

    Google Scholar 

  53. P. Gerard, “Microlocal defect measures,” Commun. Part. Differ. Equ., 16, No. 11, 1761–1794 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  54. D. M. Gitman and I. V. Tyutin, Canonical Quantization of Fields with Constraints [in Russian], Nauka, Moscow, 1986.

    Google Scholar 

  55. R. T. Glassey, “On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations,” J. Math. Phys., 18, No. 9, 1794–1797 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Glauber, “Optical coherence,” in: Quantum Physics and Quantum Radiophysics [Russian translation], Mir, Moscow, 91–279 (1966).

  57. V. P. Glushko, “Degenerate linear differential equations. I,” Differ. Equ., 4 (1968), 815–822 (1972).

    MATH  Google Scholar 

  58. V. P. Glushko, “Degenerate linear differential equations. II,” Differ. Equ., 4 (1968), 1009–1014 (1972).

    MATH  Google Scholar 

  59. V. P. Glushko, “Degenerate linear differential equations. III,” Differ. Equ., 5 (1969), 352–361 (1972).

    MATH  Google Scholar 

  60. V. P. Glushko, “Degenerate linear differential equations. IV,” Differ. Equ., 5 (1969), 465–471 (1972).

    MATH  Google Scholar 

  61. I. C. Gochberg and M. G. Krein, Introduction to the Theory of Linear Non-self-adjoint Operators, AMS, Providence, 1969.

    Google Scholar 

  62. N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, John Wiley & Sons, New York, 1988.

  63. S. A. Golopuz, “Defining boundary conditions and a degenerate problem for elliptic boundary value problems with a small parameter multiplying the highest derivatives,” Sb. Math., 194, No. 5, 641–668 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator-Differential Equations, Naukova Dumka, Kiev, 1984.

    MATH  Google Scholar 

  65. G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.

    MATH  Google Scholar 

  66. E. Hewitt and K. Yosida, “Finitely additive measures,” Trans. Am. Math. Soc., 72, 46–66 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  67. C. Foias, “Statistical study of Navier–Stokes equations. I,” Rend. Sem. Mat. Univ. Padova, 48, 219–348 (1972).

    MathSciNet  Google Scholar 

  68. C. Foias, “Statistical study of Navier–Stokes equations. II,” Rend. Sem. Mat. Univ. Padova, 49, 9–123 (1972).

    Google Scholar 

  69. H. Fujita, “On the blowing up of solutions of the Cauchy problem for ut = Δu + u 1+α,” J. Fac. Sci. Univ. Tokio. Sec. 1, 13, 109–124 (1966).

    Google Scholar 

  70. A. M. Il’in, “Degenerating elliptic and parabolic equations,” Mat. Sb., 50, No. 4, 443–498 (1960).

    MathSciNet  Google Scholar 

  71. V. K. Ivanov, I. V. Mel’nikova, and A. I. Filinkov, Operator-Differential Equations and Ill-posed Problems [in Russian], Nauka, Moscow, 1995.

    Google Scholar 

  72. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-posed Problems and Its Applications, VSP, Utrecht, 2002.

    Book  MATH  Google Scholar 

  73. M. V. Karasev, “Magneto-metric Hamiltonians on quantum surfaces in the configuration space,” Russ. J. Math. Phys., 14, No. 1, 57–65 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin–Heidelberg–New York, 1966.

    Book  MATH  Google Scholar 

  75. M. V. Keldysh, “On some cases of degeneration of elliptic equations on the boundary of the domain”, Dokl. Akad. Nauk SSSR, 77, No. 2, 181–183 (1951).

    Google Scholar 

  76. A. S. Kholevo, Probabilistic and Statistical Aspects in Quantum Theory, IKI, Moscow–Izhevsk, 2003.

  77. E. Ya. Khruslov, “An averaged model of a strongly inhomogeneous medium with memory,” Russ. Math. Surv., 45, No. 1, 211–212 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  78. V. V. Kozlov, “The dynamics of systems with nonintegrable bonds,” Vestn. Moskov. Univ. Ser. I Mat. Mekh., 31, 92–100 (1982).

    Google Scholar 

  79. V. V. Kozlov, “Stability of periodic trajectories and Chebyshev polynomials,” Vestn. Mosk. Univ. Ser. I Mat. Mekh., 96, No. 5, 7–13 (1991).

    Google Scholar 

  80. V. V. Kozlov, Thermal Equilibrium in the Sense of Gibbs and Poincaré [in Russian], Inst. Komp. Issled., Moscow–Izhevsk, 2002.

  81. A. N. Kolmogorov, “On the possibility of the general definition of a derivative, integral and summability of divergent series,” in: Selected works by A.N. Kolmogorov. Vol. 1, Nauka, Moscow, 44–46 (2004).

  82. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow, 1972.

    Google Scholar 

  83. V. N. Kolokol’tsov, “Schrödinger operators with singular potentials and magnetic fields,” Sb. Math., 194, No. 6, 897–917 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  84. V. A. Kondratyev, “Boundary problems for parabolic equations in closed domains,” Trans. Moscow Math. Soc., 15, 450–504 (1966).

    Google Scholar 

  85. L. V. Korobenko and V. Zh. Sakbaev, “Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerate coefficients,” Comput. Math. Math. Phys., 49, No. 6, 1037–1053 (2009).

    Article  MathSciNet  Google Scholar 

  86. M. A. Krasnosel’skij, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevskij, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden, 1976.

    Book  MATH  Google Scholar 

  87. S. G. Krejn, Linear Differential Equations in Banach Space, AMS, Providence, 1972.

  88. S. N. Kruzhkov, “Nonlinear parabolic equations with two independent variables,” Tr. Mosk. Mat. Obs., 16, 329–346 (1967).

    MATH  Google Scholar 

  89. S. N. Kruzhkov, “Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order,” Dokl. Akad. Nauk SSSR, 187, No. 1, 29–32 (1969).

    MathSciNet  MATH  Google Scholar 

  90. S. N. Kruzhkov, Lectures on Partial Differential Equations [in Russian], Moscow State Univ., Moscow, 1970.

    Google Scholar 

  91. S. N. Kruzhkov and V. L. Kamynin, “On passage to the limit in quasilinear parabolic equations,” Proc. Steklov Inst. Math., 167, 205–232 (1986).

    MATH  Google Scholar 

  92. L. D. Kudryavtsev, “A variational method of finding generalized solutions of differential equations in function spaces with power weight functions,” Differ. Equ., 19, 1282–1296 (1983).

    MATH  Google Scholar 

  93. S. Kuratovskiy, Topology. Vol. 1, Mir, Moscow, 1966.

  94. O. A. Ladyzhenskaya, “On the equations with small parameter at the higher derivatives in the linear partial differential equations,” Vestn. Leningr. Univ., 12, No. 7, 104–120 (1957).

    MATH  Google Scholar 

  95. O. A. Ladyzhensakaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow, 1973.

    Google Scholar 

  96. R. Latt´es and J.-L. Lions, The Method of Quasi-Reversibility. Applications to Partial Differential Equations, Elsevier, New York, 1969.

  97. B. M. Levitan and A. E. Mamatov, “An estimate of the Cauchy matrix function for the Dirac system in the case of finite-gap nonperiodic potentials,” Math. Notes, 53, No. 4, 400–409 (1993).

    Article  MathSciNet  Google Scholar 

  98. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications. Vol. I–III, Springer, Berlin–Heidelberg–New York, 1972–1973.

  99. L. A. Lyusternik and V. I. Sobolev, A Short Course on Functional Analysis. Textbook [in Russian], Vysshaya Shkola, Moscow, 1982.

  100. I. V. Mel’nikova, “Semigroup regularization of differential problems,” Dokl. Akad. Nauk, 393, No. 6, 744–748 (2003).

    MathSciNet  Google Scholar 

  101. V. P. Mikhailov, “Theorem on existence and uniqueness of solution of a boundary-value problem for a parabolic equation with singularities on the boundary,” Tr. Mat. Inst. Steklova, 91, 47–58 (1967).

    Google Scholar 

  102. V. P. Mikhailov, Partial Differential Equations [in Russian], Mir, Moscow, 1978.

  103. S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Nauka, Moscow, 1965.

    Google Scholar 

  104. M. Miyake and Y. Hashimoto, “Newton polygons and Gevrey indices for linear partial differential operators,” Nagoya Math. J., 128, 15–47 (1992).

    MathSciNet  MATH  Google Scholar 

  105. N. Mizoguchi, F. Quiros, and J. L. Vazquez, “Multiple blow-up solution for a porous medium equation with reaction,” Math. Ann., 350, No. 4, 801–827 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  106. I. P. Natanson, Theory of Functions of Real Variable, Ungar, New York, 1955.

    MATH  Google Scholar 

  107. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka, Moscow, 1969.

    MATH  Google Scholar 

  108. O. A. Oleinik, “On linear second-order equations with non-negative characteristic form,” Mat. Sb., 69, No. 1, 111–140 (1966).

    MathSciNet  Google Scholar 

  109. O. A. Oleinik and E. V. Radkevich, “Second order equations with nonnegative characteristic form,” Itogi Nauki, Ser. Mat. Mat. Anal., 1969, 7–252 (1971).

    Google Scholar 

  110. Yu. N. Orlov, Essentials of Quantization of Degenerated Dynamical Systems [in Russian], Moscow, MFTI, 2004.

    Google Scholar 

  111. Yu. B. Orochko, “Impenetrability condition for the point of degeneration of an even-order oneterm symmetric differential operator,” Sb. Math., 194, No. 5, 745–774 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  112. E. Yu. Panov, “On sequences of measure-valued solutions of a first-order quasilinear equation,” Sb. Math., 81, No. 1, 211–227 (1995).

    Article  MathSciNet  Google Scholar 

  113. S. E. Pastukhova, “Degenerate equations of monotone type: Lavrent’ev phenomenon and attainability problems,” Sb. Math., 198, No. 10, 1465–1494 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  114. I. P. Pavlotsky and M. Strianese, “Irreversibility in classical mechanics as a consequence of Poincaré group,” Int. J. Mod. Phys. B, 10, No. 21, 2675–2685 (1996).

    Article  MathSciNet  Google Scholar 

  115. R. S. Phillips, “Dissipative operators and hyperbolic systems of partial differential equations,” Trans. Am. Math. Soc., 90, 193–254 (1959).

    Article  MATH  Google Scholar 

  116. P. I. Plotnikov and S. A. Sazhenkov, “Cauchy problem for the Graetz–Nusselt ultraparabolic equation,” Dokl. Math., 71, No. 2, 234–237 (2005).

    MathSciNet  MATH  Google Scholar 

  117. G. M. Prosperi, “Quantum measurement process and observation of continuous trajectories,” Mat. Nov. Zarubezh. Nauk., 42, 197–222 (1988).

    Google Scholar 

  118. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press, New York, 1980.

  119. M. V. Safonov, “Nonuniqueness for second-order elliptic equations with measurable coefficients,” SIAM J. Math. Anal., 30, No. 4, 879–895 (1967).

    Article  MathSciNet  Google Scholar 

  120. V. Zh. Sakbaev, “On the formulationn of the Cauchy problem for the degenerating Schödinger equation,” in: Mezhd. Sb. Nekotor. Probl. Sovrem. Prikl. Mat., MFTI, Moscow, 161–178 (1999).

  121. V. Zh. Sakbaev, “Stochastic properties of degenerated quantum systems,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13, No. 1, 65–85 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  122. V. Zh. Sakbaev, “On the formulation of the Cauchy problem for the Schrödinger equation that degenerates on a half-space,” Comput. Math. Math. Phys., 42, No. 11, 1636–1646 (2002).

    MathSciNet  Google Scholar 

  123. V. Zh. Sakbaev, “On the Cauchy problem for the Schrödinger equation with generator of variable type,” Differ. Equ., 40, No. 2, 241–255 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  124. V. Zh Sakbaev, “Functionals on solutions of the Cauchy problem for the Schrödinger equation with degeneration on a half-line,” Comput. Math. Math. Phys., 44, No. 9, 1573–1591 (2004).

    MathSciNet  Google Scholar 

  125. V. Zh. Sakbaev, “On the Cauchy problem for the Schrödinger equation with generator of variable type,” Differ. Equ., 40, No. 2, 241–255 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  126. V. Zh. Sakbaev, “Set-valued mappings specified by regularization of the Schrödinger equation with degeneration,” Comput. Math. Math. Phys., 46, No. 4, 651–665 (2006).

    Article  MathSciNet  Google Scholar 

  127. V. Zh. Sakbaev, “Degeneration and regularization of the operator in the Cauchy problem for the Schrödinger equation,” Sovrem. Mat. Prilozh., 38, No. 3, 95–109 (2006).

    Google Scholar 

  128. V. Zh. Sakbaev, “On the Cauchy problem for the Schrödinger equation degenerating outside a segment: properties of solutions and spectral aspects of the regularization,” J. Math. Sci., 153, No. 5, 562–590 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  129. V. Zh. Sakbaev, “On dynamics of quantum states generated by the Cauchy problem for the Schrödinger equation with degeneration on the half-line,” J. Math. Sci., 151, No. 1, 2741–2753 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  130. V. Zh. Sakbaev, “Approximation and variational methods for regularization of ill-posed problems,” Dokl. Math., 77, No. 2, 208–211 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  131. V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation,” Proc. Steklov Inst. Math., 261, 253–261 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  132. V. Zh. Sakbaev, “On the dynamics of a degenerated quantum system in the space of functions integrable in a finitely additive measure,” Tr. Mosk. Fiz. Tekh. Inst., 4, No. 4, 126–147 (2009).

    Google Scholar 

  133. V. Zh. Sakbaev, “Averaging of quantum dynamical semigroups,” Theor. Math. Phys., 164, No. 3, 1215–1221 (2010).

    Article  MATH  Google Scholar 

  134. V. Zh. Sakbaev, “The set of quantum sates and its averaged dynamic transformations,” Russ. Math., 55, No. 10, 41–50 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  135. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter and Co., Berlin, 1995.

    Book  MATH  Google Scholar 

  136. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials,” Math. Notes, 66, No. 6, 741–753 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  137. R. V. Shamin, “Spaces of initial data for parabolic functional-differential equations,” Math. Notes, 71, No. 4, 580–584 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  138. A. N. Sherstnev, Methods of Bilinear Forms in Non-commutative Measure and Integral Theory [in Russian], Fizmatlit, Moscow, 2008.

    Google Scholar 

  139. L. N. Slobodetskij, “Generalized Sobolev spaces and their application to boundary problems for partial differential equations,” Am. Math. Soc. Transl., 57, 207–275 (1966).

    Google Scholar 

  140. M. M. Smirnov, Degenerating Elliptic and Hyperbolic Equations, Nauka, Moscow, 1966.

    MATH  Google Scholar 

  141. O. G. Smolyanov and A. Yu. Khrennikov, “Probabilistic measurement models with noncommuting and commuting observables,” Dokl. Math., 71, No. 3, 461–465 (2005).

    MATH  Google Scholar 

  142. O. G. Smolyanov and E. T. Shavgulidze, Functional Integrals, Moscow State Univ., Moscow, 1990.

    Google Scholar 

  143. M. F. Sukhinin, Selected Chapters of Nonlinear Analysis, Peoples’ Friendship Univ. Russia, Moscow, 1992.

  144. M. D. Srinivas, “Collapse postulate for observables with continuous spectra,” Commun. Math. Phys., 71, No. 2, 131–158 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  145. B. Szökefalvi-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam–London, 1970.

  146. L. Tartar, “H-measures, a new approach for studying homogenization, oscillation and concentration effects in partial differential equations,” Proc. R. Soc. Edinburgh. Sect. A (Math.), 115, No. 3–4, 193–230 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  147. A. N. Tikhonov and V. Ya Arsenin, Solutions of Ill-Posed Problems, John Wiley & Sons, New York; Winston & Sons, Washington, 1977.

  148. V. S. Varadarayn, “Measures on topological spaces,” Mat. Sb. 55 (97), No. 1, 35–100 (1961).

  149. F. P. Vasil’ev, Methods for Solving Extremal Problems. Minimization Problems in Function Spaces, Regularization, Approximation. Textbook [in Russian], Nauka, Moscow, 1981.

  150. A. M. Vershik and O. A. Ladyzhensjkya, “On the evolution of measures defined by the Navier–Stokes equations, and on the solvability of the Cauchy problem for Hopf’s statistical equation,” Sov. Math. Dokl., 17, 18–22 (1976).

    MATH  Google Scholar 

  151. M. I. Vishik and V. V. Grushin, “Degenerating elliptic differential and pseudo-differential operators,” Russ. Math. Surv., 25, No. 4, 21–50 (1970).

    Article  MATH  Google Scholar 

  152. M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Usp. Mat. Nauk, 12, No. 5, 3–122 (1957).

    MathSciNet  MATH  Google Scholar 

  153. V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, New York, 1971.

    Google Scholar 

  154. B. Z. Vulikh, Short Course in Theory of Functions of Real Variable [in Russian], Nauka, Moscow, 1965.

    Google Scholar 

  155. A. D. Wentzell and M. I. Freidlin, Fluctuations in Dynamical Systems Subject to Small Random Perturbations [in Russian], Nauka, Moscow, 1979.

    Google Scholar 

  156. G. B. Whitham,, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

  157. K. Yosida, Functional Analysis, Springer, Berlin–Göttingen–Heidelberg, 1965.

    Book  MATH  Google Scholar 

  158. G. N. Yakovlev, “A variational problem,” Differ. Equ., 5 (1969), 960–966 (1972).

    MATH  Google Scholar 

  159. G. N. Yakovlev, “Differential properties of extremals of quadratic functionals with discontinuous coefficients,” Differ. Equ., 7 (1971), 977–981 (1973).

    MATH  Google Scholar 

  160. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media,” Teor. Fiz., 61, No. 1, 118–134 (1971).

    MathSciNet  Google Scholar 

  161. P. E. Zhidkov, Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Springer, Heidelberg, 2001.

    Google Scholar 

  162. V. V. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations,” Funct. Anal. Appl., 43, No. 2, 96–112 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  163. V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zh. Sakbaev.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 43, Partial Differential Equations, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakbaev, V.Z. Cauchy Problem for Degenerating Linear Differential Equations and Averaging of Approximating Regularizations. J Math Sci 213, 287–459 (2016). https://doi.org/10.1007/s10958-016-2719-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2719-z

Keywords

Navigation