Skip to main content
Log in

Descriptive Spaces and Proper Classes of Functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract. The remarkable class of measurable functions was introduced by classics of function theory. It has found different applications in various branches of mathematics. However this class turned out too restrictive for solving some natural mathematical problems because it is essentially connected with the property of countability. Therefore, along with it another remarkable class, essentially connected with the property of finiteness, was introduced. It is the class of uniform functions. Measurable functions are described both in the classical Lebesgue–Borel language of preimages and in the quite new language of covers. Uniform functions are described in the language of covers exclusively. Both the families of measurable functions and the families of uniform functions are determined by the rigid structure of their supports (descriptive spaces). For this reason, mathematicians weakened more that once the rigidity of the structure of descriptive spaces at the expense of using the additional property of negligence. The present paper is devoted to a contemporary formalization of the indicated ideas. Some applications of the introduced classes of functions to solving a number of known mathematical problems is traced in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Aleksandrov, “Additive set functions on abstract spaces,” Mat. Sb., 8, No. 2, 303–348 (1940); 9, No. 2-3, 563–628 (1941); 13, No. 3, 169–238 (1943).

  2. R. Baire, “Sur les fonctions de variables réelles,” Ann. Mat. Pura Appl. Ser. IIIa, 3, 1–122 (1899).

    Article  MATH  Google Scholar 

  3. R. Baire, Le¸cons sur les fonctions discontinues, Gauthier-Villars, Paris (1905).

    Google Scholar 

  4. E. Borel, Le¸cons sur la théorie des fonctions, Gauthier-Villars, Paris (1898).

    Google Scholar 

  5. E. Borel, Le¸cons sur les fonctions de variables réelles, Gauthier-Villars, Paris (1905).

    Google Scholar 

  6. N. T. Fine, L. Gillman, and J. Lambek, Rings of Quotients of Rings of Functions, McGill Univ. Press, Montreal (1965).

    Google Scholar 

  7. F. Hausdorff, Grundzüge der Mengenlehre, Viet, Leipzig (1914).

    Google Scholar 

  8. F. Hausdorff, Set Theory, Chelsea Publ., New York (1962).

    Google Scholar 

  9. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, Berlin (1965).

    Book  MATH  Google Scholar 

  10. T. Jech, Set Theory, Springer, Berlin (2002).

    Google Scholar 

  11. K. Kuratowski, Topology, Academic Press, New York (1966).

    Google Scholar 

  12. H. Lebesgue, “Integral, longeur, aire,” Ann. Math. (3), 7 231–359 (1902).

  13. H. Lebesgue, “Sur les séries triginométriques,” Ann. Sci. École Norm. Sup. (3), 20, 453–485 (1903).

  14. H. Lebesgue, Le¸cons sur la l’integration et recherche des fonctions primitives, Gauthier-Villars, Paris (1904).

    Google Scholar 

  15. A. V. Mikhalev, A. A. Seredinskii, and V. K. Zakharov, “Characterization of the space of Riemann integrable functions by means of cuts of the space of continuous functions. II,” Moscow Univ. Math. Bull., 63, No. 5, 183–192 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Regoli, “Some characterization of sets of measurable functions,” Am. Math. Mon., 84, No. 6, 455–458 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. V. Rodionov and V. K. Zakharov, “A fine correlation between Baire and Borel functional hierarchies,” Acta Math. Hung., 142, No. 2, 384–402 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Semadeni, Banach Spaces of Continuous Functions, Mon. Mat., Vol. 55, PWA, Warszawa (1971).

  19. M. N. Stone, “Applications of the theory of Boolean rings to general topology,” Trans. Am Math. Soc., 41, 375–481 (1937).

    Article  Google Scholar 

  20. W. H. Young, “On upper and lower integration,” Proc. London Math. Soc. Ser. 2, 2, 52–66 (1905).

    Article  Google Scholar 

  21. W. H. Young, “A new method in the theory of integration,” Proc. London Math. Soc. Ser. 2, 9, 15–50 (1911).

    Article  Google Scholar 

  22. V. K. Zakharov, “The functional representation of the uniform completion of the maximal and of the countably dense modules of fractions of the module of continuous functions,” Russ. Math. Surv., 35, No. 4, 200–201 (1980).

    Article  MATH  Google Scholar 

  23. V. K. Zakharov, “Functional characterization of absolute and Dedekind completion,” Bull. Acad. Pol. Sci. Ser. Math., 39, No. 5-6, 293–297 (1981).

  24. V. K. Zakharov, “Functional characterization of the absolute, vector lattices of functions with the Baire property and of quasinormal functions and modules of particular continuous functions,” Trans. Moscow Math. Soc., No. 1, 69–105 (1984).

  25. V. K. Zakharov, “Some perfect preimages connected with extensions of the family of continuous functions,” Collect. Math. Soc. Jάnos Bolyai, 41, 703–728 (1985).

  26. V. K. Zakharov, “On functions connected with absolute, Dedekind completion, and divisible envelope,” Period. Math. Hung., 18, No. 1, 17–26 (1987).

    Article  MATH  Google Scholar 

  27. V. K. Zakharov, “On functions connected with sequential absolute, Cantor completion, and classical ring of quotients,” Period. Math. Hung., 19, No. 2, 113–133 (1988).

    Article  MATH  Google Scholar 

  28. V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension,” Stud. Sci. Math. Hung., 24, No. 2-3, 93–117 (1989).

  29. V. K. Zakharov, “Connections between the Lebesgue extension and the Borel first class extension, and between the preimages corresponding to them,” Math. USSR Izv., 37, No. 2, 273–302 (1991).

    Article  MathSciNet  Google Scholar 

  30. V. K. Zakharov, “The Arens extension of the ring of continuous functions,” St. Petersbourg Math J., 4, No. 1, 131–148 (1993).

    Google Scholar 

  31. V. K. Zakharov, “Connection between the classical ring of quotients of the ring of continuous functions and Riemann integrable functions,” Fundam. Prikl. Mat., 1, No. 1, 161–176 (1995).

  32. V. K. Zakharov, “Extensions of the ring of continuous functions generated by regular, countably-divisible, complete rings of quotients, and their corresponding pre-images,” Izv. Math., 59, No. 4, 677–720 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. K. Zakharov, “Extensions of the ring of continuous functions generated by the classical, rational, and regular rings of fractions as divisible hulls,” Sb. Math., 186, No. 12, 1773–1809 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. K. Zakharov, “Relationships between the Riemann extension and the classical ring of quotients and between the Semadeni preimage and the sequential absolute,” Trans. Moscow Math. Soc., 57, 223–243 (1996).

    Google Scholar 

  35. V. K. Zakharov, “Classification of Borel sets and functions for an arbitrary space,” Dokl. Math., 66, No. 1, 99–101 (2002).

    MATH  Google Scholar 

  36. V. K. Zakharov, “New classes of functions related to general families of sets,” Dokl. Math., 73, No. 2, 197–201 (2006).

    Article  Google Scholar 

  37. V. K. Zakharov, “Hausdorff theorems on measurable functions and a new class of uniform functions,” Moscow Univ. Math. Bull., 63, No. 1, 1–6 (2008).

    MathSciNet  Google Scholar 

  38. V. K. Zakharov and A. V. Mikhalev, “Integral representation for Radon measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 4, 1135–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  39. V. K. Zakharov and A. V. Mikhalev, “Radon problem for regular measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 3, 801–808 (1997).

  40. V. K. Zakharov and A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space,” Izv. Math., 63, No. 5, 881–921 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  41. V. K. Zakharov and A. V. Mikhalev, “Connections between the integral Radon representations for locally compact and Hausdorff spaces,” Fundam. Prikl. Mat., 7, No. 1, 33–46 (2001).

    MathSciNet  MATH  Google Scholar 

  42. V. K. Zakharov and A. V. Mikhalev, “The problem of the general Radon representation for an arbitrary Hausdorff space. II,” Izv. Math., 66, No. 6, 1087–1101 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  43. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “The problem of characterization of general Radon integrals,” Dokl. Math., 82, No. 1, 613–616 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  44. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of integrals,” Russ. Math. Surv., 65, No. 4, 741–765 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  45. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Characterization of integrals with respect to arbitrary Radon measures by the boundedness indices,” J. Math. Sci., 85, No. 3, 417–429 (2012).

    Article  MathSciNet  Google Scholar 

  46. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Characterization of Radon integrals as linear functionals,” J. Math. Sci., 85, No. 2, 233–281 (2012).

    Article  MathSciNet  Google Scholar 

  47. V. K. Zakharov and T. V. Rodionov, “Classification of Borel sets and functions for an arbitrary space,” Sb. Math., 199, No. 6, 833–869 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. K. Zakharov and T. V. Rodionov, “A class of uniform functions and its relationship with the class of measurable functions,” Math. Notes, 84, No. 6, 756–770 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  49. V. K. Zakharov and T. V. Rodionov, “Naturalness of the class of Lebesgue–Borel–Hausdorff measurable functions,” Math. Notes, 95, No. 4, 500–508 (2014).

    Article  MathSciNet  Google Scholar 

  50. V. K. Zakharov and A. A. Seredinskii, “A new characterization of Riemann-integrable functions,” J. Math. Sci., 139, No. 4, 6708–6714 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Zakharov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 2, pp. 51–107, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, V.K., Mikhalev, A.V. & Rodionov, T.V. Descriptive Spaces and Proper Classes of Functions. J Math Sci 213, 163–200 (2016). https://doi.org/10.1007/s10958-016-2709-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-016-2709-1

Keywords

Navigation