Skip to main content

Advertisement

Log in

Characterization of radon integrals as linear functionals

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The problem of characterization of integrals as linear functionals is considered in this paper. It has its origin in the well-known result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann–Stieltjes integrals on a segment and is directly connected with the famous theorem of J. Radon (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact in ℝn. After the works of J. Radon, M. Fréchet, and F. Hausdorff, the problem of characterization of integrals as linear functionals has been concretized as the problem of extension of Radon’s theorem from ℝn to more general topological spaces with Radon measures. This problem turned out to be difficult, and its solution has a long and abundant history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solution are connected with such eminent mathematicians as S. Banach (1937–38), S. Saks (1937–38), S. Kakutani (1941), P. Halmos (1950), E. Hewitt (1952), R. E. Edwards (1953), Yu. V. Prokhorov (1956), N. Bourbaki (1969), H. K¨onig (1995), V. K. Zakharov and A. V. Mikhalev (1997), et al. Essential ideas and technical tools were worked out by A. D. Alexandrov (1940–43), M. N. Stone (1948–49), D. H. Fremlin (1974), et al. The article is devoted to the modern stage of solving this problem connected with the works of the authors (1997–2009). The solution of the problem is presented in the form of the parametric theorems on characterization of integrals. These theorems immediately imply characterization theorems of the above-mentioned authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Alexandrov, “Additive set functions on abstract spaces. I–III,” Mat. Sb., 8, No. 2, 303–348 (1940); 9, No. 2–3, 563–628 (1941); 13, No. 3, 169–238 (1943).

  2. V. I. Bogachev, Measure Theory, Vols. I, II, Springer, Berlin (2007).

    Google Scholar 

  3. N. Bourbaki, Intégration. Chaps. 1–5, Springer, Berlin (2007).

  4. N. Bourbaki, Intégration. Chap. IX, Hermann, Paris (1969).

  5. N. Bourbaki, Intégration. Chaps. 9, 10, Springer, Berlin (2007).

    Google Scholar 

  6. N. Dinculianu, Vector Measures, Oxford Univ. Press–Pergamon, London–New York (1967).

    Google Scholar 

  7. N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure Appl. Math., Vol. 7, Interscience Publishers, New York (1958).

  8. R. E. Edwards, “A theory of Radon measures on locally compact spaces,” Acta Math., 89, 133–164 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Engelking, General Topology, Heldermann, Berlin (1989).

    MATH  Google Scholar 

  10. M. Fréchet, “Sur les opérations linéaires,” Trans. Amer. Math. Soc., 5, 493–499 (1904).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Fréchet, “Sur l’integrale d’une fonctionnelle ´etendue ´a un ensemble abstrait,” Bull. Soc. Math. Fr., 18, 248–265 (1915).

    Google Scholar 

  12. D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge (1974).

    Book  MATH  Google Scholar 

  13. D. H. Fremlin, Measure Theory, Vols. 1–5, Univ. of Essex, Colchester (2003–2008).

  14. J. Hadamard, “Sur les opérations fonctionelles,” C. R. Acad. Sci. Paris, 136, 351–354 (1903).

    MATH  Google Scholar 

  15. P. R. Halmos, Measure Theory, Van Nostrand, Princeton (1950).

    MATH  Google Scholar 

  16. F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig (1914).

    MATH  Google Scholar 

  17. F. Hausdorff, “Über halbstetige Functionen und deren Verallgemeinerung,” Math. Z., 4, 292–309 (1915).

    Google Scholar 

  18. F. Hausdorff, Set Theory, Chelsea (1962).

  19. E. Hewitt, “Integration on locally compact spaces. I,” Univ. Washington Publ. Math., 3, 71–75 (1952).

    MathSciNet  Google Scholar 

  20. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer, Berlin (1965).

    MATH  Google Scholar 

  21. K. Jacobs, Measure and Integral, Academic Press, New York (1978).

    MATH  Google Scholar 

  22. T. Jech, Set Theory, Springer Monographs Math., Springer, Berlin (2002).

  23. S. Kakutani, “Concrete representation of abstract (M)-spaces,” Ann. Math. (2), 42, 994–1024 (1941).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. König, “The Danielle–Stone–Riesz representation theorem,” Operator Theory: Adv. Appl., 75, 191–222 (1995).

    Google Scholar 

  25. H. König, Measure and Integration, Springer, Berlin (1997).

    MATH  Google Scholar 

  26. H. König, “On the inner Daniell–Stone and Riesz representation theorems,” Doc. Math., 5, 301–315 (2000).

    MathSciNet  MATH  Google Scholar 

  27. Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory,” Theory Probab. Appl., 1, 157–214 (1956).

    Article  Google Scholar 

  28. J. Radon, “Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber. Math.-Natur. Kl. Akad. Wiss. Wien, 122, 1295–1438 (1913).

    MATH  Google Scholar 

  29. F. Riesz, “Sur les opérations fonctionelles linéaires,” C. R. Acad. Sci. Paris, 149, 974–977 (1909).

    Google Scholar 

  30. S. Saks, Theory of the Integral, PWN, Warszawa (1937).

    Google Scholar 

  31. S. Saks, “Integration in abstract metric spaces,” Duke Math. J., 4, 408–411 (1938).

    Article  MathSciNet  Google Scholar 

  32. Z. Semadeni, Banach Spaces of Continuous Functions, Monografie Matematyczne, Vol. 55, PWN, Warszawa (1971).

    Google Scholar 

  33. W. Sierpiński, “Sur les fonctions développables en séries absolument convergentes de fonctions continues,” Fund. Math., 2, 15–27 (1921).

    MATH  Google Scholar 

  34. M. N. Stone, “Notes on integration. I–IV,” Proc. Natl. Acad. Sci. U.S.A., 34, 336–342, 447–455, 483–490 (1948); 35, 50–58 (1949).

  35. F. Topsoe, Topology and Measure, Lect. Notes Math., Vol. 133, Springer, Berlin (1970).

    MATH  Google Scholar 

  36. F. Topsoe, “Further results on integral representations,” Studia Math., 55, 239–245 (1976).

    MathSciNet  Google Scholar 

  37. B. Z. Vulikh, Introduction to the Theory of Partially Ordered Vector Spaces, Wolters-Noordhoff (1967).

  38. V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension,” Stud. Sci. Math. Hungar., 24, No. 2-3, 93–117 (1989).

    MATH  Google Scholar 

  39. V. K. Zakharov, “The connection between the complete ring of quotients of the ring of continuous functions, regular completion, Hausdorff–Sierpiński extensions,” Russ. Math. Surv., 45, No. 6, 177–178 (1990).

    Article  MATH  Google Scholar 

  40. V. K. Zakharov, “The Gordon preimage of the Alexandrov space as an enclosed covering,” Russ. Acad. Sci. Izv. Math., 40, 405–424 (1992).

    MATH  Google Scholar 

  41. V. K. Zakharov, “The Arens extension of the ring of continuous functions,” St. Petersburg Math. J., 4, No. 1, 131–148 (1993).

    MathSciNet  Google Scholar 

  42. V. K. Zakharov, “Problem of characterization of Radon integrals,” Dokl. Math., 66, No. 1, 118–120 (2002).

    MATH  Google Scholar 

  43. V. K. Zakharov, “The Riesz–Radon problem of characterizing of integrals and the weak compactness of Radon measures,” Proc. Steklov Inst. Math., 248, 101–110 (2005).

    Google Scholar 

  44. V. K. Zakharov, “New classes of functions related to general families of sets,” Dokl. Math., 73, No. 2, 197–201 (2006).

    Article  Google Scholar 

  45. V. K. Zakharov and A. V. Mikhalev, “Integral representation for Radon measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 4, 1135–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  46. V. K. Zakharov and A. V. Mikhalev, “Radon problem for regular measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 3, 801–808 (1997).

    MathSciNet  MATH  Google Scholar 

  47. V. K. Zakharov and A. V. Mikhalev, “The problem of integral representation for Radon measures on a Hausdorff space,” Dokl. Math., 57, No. 3, 337–339 (1998).

    MathSciNet  Google Scholar 

  48. V. K. Zakharov and A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space,” Izv. Math., 63, No. 5, 881–921 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  49. V. K. Zakharov and A. V. Mikhalev, “Connections between the integral Radon representations for locally compact and Hausdorff spaces,” Fundam. Prikl. Mat., 7, No. 1, 33–46 (2001).

    MathSciNet  MATH  Google Scholar 

  50. V. K. Zakharov and A. V. Mikhalev, “The problem of the general Radon representation for an arbitrary Hausdorff space. II,” Izv. Math., 66, No. 6, 1087–1101 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. K. Zakharov and A. V. Mikhalev, “Riesz–Radon problem of characterisation of Radon integrals,” in: Kolmogorov and Contemporary Mathematics, Marcel Dekker, New York (2003), pp. 260–261.

  52. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of Radon integrals: bounded measures; positive measures; bimeasures; general Radon measures,” in: Modern Problems of Math., Mech., and Their Appl. Materials of Int. Conf. Dedicated to the 70th Anniv. of Rector of MSU Acad. V. A. Sadovnichy [in Russian], Universitetskaia Kniga, Moscow (2009), pp. 91–92.

  53. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of integrals,” Russ. Math. Surv., 65, No. 4, 741–765 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  54. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “The problem of characterization of general Radon integrals,” Dokl. Math., 82, No. 1, 613–616 (2010).

    Article  MATH  Google Scholar 

  55. V. K. Zakharov and T. V. Rodionov, “Classification of Borel sets and functions for an arbitrary space,” Sb. Math., 199, No. 6, 833–869 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  56. V. K. Zakharov and T. V. Rodionov, “A class of uniform functions and its relationship with the class of measurable functions,” Math. Notes, 84, No. 6, 756–770 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Zakharov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 8, pp. 87–161, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, V.K., Mikhalev, A.V. & Rodionov, T.V. Characterization of radon integrals as linear functionals. J Math Sci 185, 233–281 (2012). https://doi.org/10.1007/s10958-012-0913-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0913-1

Keywords

Navigation