Skip to main content
Log in

Methods of Numerical Solution of Optimal Control Problems Based on the Pontryagin Maximum Principle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study optimal control problems whose behavior is described by second-order differential equations with nonlocal Bitsadze–Samarski boundary conditions. Necessary conditions of optimality are obtained in terms of the maximum principle; adjoint equations are constructed in the differential and integral form. Necessary and sufficient optimality conditions are obtained for a linear problem, a difference scheme is constructed and examined, and a numerical algorithm is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Bitsadze and A. A. Samarski, “On some simple generalizations of linear elliptic boundary problems,” Dokl. Akad. Nauk SSSR, 185, 739–740 (1969); English transl.: Sov. Math. Dokl., 10, 398–400 (1969).

    MATH  Google Scholar 

  2. D. Devadze, M. Abashidze, and V. Beridze, “Numerical methods of solution of some optimization problems in elasticity theory,” Sci. J. Intellect, 2 (34), Tbilisi (2009).

  3. N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York–London (1958).

    Google Scholar 

  4. D. G. Gordeziani, Methods for solving a class of nonlocal boundary value problems, Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi (1981).

  5. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Prentice Hall, Englewood Cliffs, N.J. (1970).

    MATH  Google Scholar 

  6. A. G. Lomtatidze, “A boundary-value problem for second-order linear differential equations with nonintegrable singularities,” Tr. Inst. Prikl. Mat. Tbilissk. Gos. Univ., 14, 136–145 (1983).

    MATH  MathSciNet  Google Scholar 

  7. A. G. Lomtatidze, “A singular three-point boundary-value problem,” Tr. Inst. Prikl. Mat. Tbilissk. Gos. Univ., 17, 122–134 (1986).

    MATH  MathSciNet  Google Scholar 

  8. V. L. Makarov and D. T. Kulyev, “The method of lines for a quasilinear equation of parabolic type with a nonclassical boundary condition,” Ukr. Mat. Zh., 37, No. 1, 42–48 (1985).

    Article  MathSciNet  Google Scholar 

  9. G. V. Meladze, T. S. Tsutsunava, and D. Sh. Devadze, “An optimal control problem for quasilinear differential equations of first order on the place with nonlocal boundary conditions,” Tbilisi State Univ., Tbilisi (1987), deposited at Georgian Institute of Scientific and Technical Information 25.12.1987, No. 372, G87, 61 p.

  10. V. I. Plotnikov, “Necessary optimality conditions for controllable systems of a general form,” Dokl. Akad. Nauk SSSR, 199, 275–278 (1971).

    MathSciNet  Google Scholar 

  11. L. S. Pontryagin, The Maximum Principle in Optimal Control [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  12. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience (1962).

  13. A. A. Samarski, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  14. A. A. Samarski, R. D. Lazarov, and V. L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions [in Russian], Vysshaya Shkola, Moscow (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Devadze.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 89, Differential Equations and Mathematical Physics, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadze, D., Beridze, V. Methods of Numerical Solution of Optimal Control Problems Based on the Pontryagin Maximum Principle. J Math Sci 206, 348–356 (2015). https://doi.org/10.1007/s10958-015-2316-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2316-6

Keywords

Navigation