Skip to main content
Log in

Inexact Reduced Gradient Methods in Nonconvex Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper proposes and develops new linesearch methods with inexact gradient information for finding stationary points of nonconvex continuously differentiable functions on finite-dimensional spaces. Some abstract convergence results for a broad class of linesearch methods are established. A general scheme for inexact reduced gradient (IRG) methods is proposed, where the errors in the gradient approximation automatically adapt with the magnitudes of the exact gradients. The sequences of iterations are shown to obtain stationary accumulation points when different stepsize selections are employed. Convergence results with constructive convergence rates for the developed IRG methods are established under the Kurdyka–Łojasiewicz property. The obtained results for the IRG methods are confirmed by encouraging numerical experiments, which demonstrate advantages of automatically controlled errors in IRG methods over other frequently used error selections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16, 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addis, A., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space trajectories. Comput. Optim. Appl. 48, 635–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aragón Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169, 95–118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Łojasiewicz property. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42, 330–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  8. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  9. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Belmont (2016)

    MATH  Google Scholar 

  11. Bloomfield, P., Steiger, W.: Least absolute deviations curve fitting. SIAM J. Sci. Stat. Comput. 1, 290–301 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60, 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burke, J.V., Lewis, A.S., Overton, M.L.: Two numerical methods for optimizing matrix stability. Linear Algebra Appl. 351–352, 147–184 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Burke, J.V., Lin, Q.: Convergence of the gradient sampling algorithm on directionally Lipschitz functions. Set-Valued Var. Anal. 29, 949–966 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MOS-SIAM Optimization Series, Philadelphia (2008)

    MATH  Google Scholar 

  17. Crockett, J.B., Chernoff, H.: Gradient methods of maximization. Pac. J. Math. 5, 33–50 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Curry, H.B.: The method of steepest descent for non-linear minimization problems. Q. Appl. Math. 2, 258–261 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg–Marquardt method under local error bound conditions. Optim. Methods Softw. 17, 605–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Devolder, O., Glineur, F., Nesterov, Yu.: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146, 37–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  22. Gannot, O.: A frequency-domain analysis of inexact gradient methods. Math. Program. 194, 975–1016 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5, 269–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  25. Jamil, M.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Model. Numer. Optim. 4, 150–194 (2013)

    MATH  Google Scholar 

  26. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition. In: Frasconi, P. et al. (eds.) Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, Part 1. Springer, Cham, pp. 795–811 (2016)

  27. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials. J. Glob. Optim. 86, 93–122 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: Globally convergent coderivative-based generalized Newton methods in nonsmooth optimizations. Math. Program. (2023). https://doi.org/10.1007/s10107-023-01980-2

    Article  Google Scholar 

  29. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: A new inexact gradient descent method with applications to nonsmooth convex optimization. arXiv:2303.08785

  30. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18, 379–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20, 1983–1994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kiwiel, K.C.: Improved convergence result for the discrete gradient and secant methods for nonsmooth optimization. J. Optim. Theory Appl. 144, 69–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lobanov, A., Gasnikov, A., Stonyakin, F.: Highly smoothness zero-order methods for solving optimization problems under PL condition. arXiv:2305.15828 (2023)

  36. Łojasiewicz, S.: Ensembles Semi-analytiques. Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (Seine-et-Oise) (1965)

    MATH  Google Scholar 

  37. Nesterov, Yu.: Universal gradient methods for convex optimization problems. Math. Program. 152, 381–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nesterov, Yu.: Lectures on Convex Optimization, 2nd edn. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  39. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press, New York (2015)

    Google Scholar 

  40. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2016)

    MATH  Google Scholar 

  41. Noll, D.: Convergence of non-smooth descent methods using the Kurdyka–Łojasiewicz inequality. J. Optim. Theory Appl. 160, 553–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ostrowski, A.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)

    MATH  Google Scholar 

  43. Polyak, B.T.: Gradient methods for minimizing functionals. USSR Comput. Math. Math. Phys. 3, 864–878 (1963)

    Article  MathSciNet  Google Scholar 

  44. Polyak, B.T.: Iterative Algorithms for Singular Minimization Problems. Nonlinear Programming, vol. 4, pp. 147–166. Academic Press, London (1981)

    Google Scholar 

  45. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  46. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  48. Rotaru, T., Glineur, F., Patrinos, P.: Tight convergence rates of the gradient method on hypoconvex functions. https://doi.org/10.48550/arXiv.2203.00775

  49. Ruder, S.: An overview of gradient descent optimization algorithms. https://doi.org/10.48550/arXiv:1609.04747

  50. Themelis, A., Stella, L., Patrinos, P.: Forward-backward quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67, 443–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vasin, A., Gasnikov, A., Dvurechensky, P., Spokoiny, V.: Accelerated gradient methods with absolute and relative noise in the gradient. Optim. Methods Softw. (2023). https://doi.org/10.1080/10556788.2023.2212503

    Article  Google Scholar 

  52. Xingyu, Z.: On the Fenchel duality between strong convexity and Lipschitz continuous gradient. https://doi.org/10.48550/arXiv.1803.06573

Download references

Acknowledgements

The authors are very grateful to anonymous reviewers for their helpful remarks and suggestions, which allowed us to improve the original presentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pham Duy Khanh or Boris S. Mordukhovich.

Additional information

Communicated by Arkadi Nemirovski.

Dedicated to the memory of Boris Polyak,

a great mathematician and incredible person.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of this author is funded by Ho Chi Minh City University of Education Foundation for Science and Technology under Grant Number CS.2023.19.02TD

Research of this author was partly supported by the US National Science Foundation under Grants DMS-1808978 and DMS-2204519, by the Australian Research Council under Grant DP-190100555, and by Project 111 of China under grant D21024.

Research of this author was partly supported by the US National Science Foundation under Grant DMS-1808978.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanh, P.D., Mordukhovich, B.S. & Tran, D.B. Inexact Reduced Gradient Methods in Nonconvex Optimization. J Optim Theory Appl (2023). https://doi.org/10.1007/s10957-023-02319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-023-02319-9

Keywords

Mathematics Subject Classification

Navigation