Skip to main content
Log in

Optimality conditions for sparse nonlinear programming

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable function subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain the decomposition properties of the Fréchet, Mordukhovich and Clarke normal cones to the sparsity constrained feasible set. Based on the decomposition properties of the normal cones, we then present and analyze three classes of Karush-Kuhn-Tucker (KKT) conditions for the SNP. At last, we establish the second-order necessary optimality condition and sufficient optimality condition for the SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ban L, Mordukhovich B S, Song W. Lipschitzian stability of the parameterized variational inequalities over generalized polyhedron in reflexive Banach spaces. Nonlinear Anal, 2011, 74: 441–461

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke H H, Luke D R, Phan H M, et al. Restricted normal cones and sparsity optimization with affine contraints. Found Comput Math, 2014, 14: 63–83

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck A, Eldar Y. Sparsity constrained nonlinear optimization: Optimality conditions and algorithms. SIAM J Optim, 2013, 23: 1480–1509

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck A, Hallak N. On the minimization over sparse symmetric sets: Projections, optimality conditions and algorithms. Math Oper Res, 2015, 41: 196–223

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumensath T. Compressed sensing with nonlinear observations and related nonlinear optimisation problems. IEEE Trans Inform Theory, 2013, 59: 3466–3474

    Article  MathSciNet  Google Scholar 

  6. Blumensath T, Davies M E. Iterative thresholding for sparse approximations. J Fourier Anal Appl, 2008, 14: 626–654

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems. New York: Springer, 2000

    Book  MATH  Google Scholar 

  8. Bourguignon S, Ninin J, Carfantan H, et al. Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance. IEEE Trans Signal Proc, 2016, 64: 1405–1419

    Article  MathSciNet  Google Scholar 

  9. Burdakov O P, Kanzow C, Schwartz A. On a reformulation of mathematical programs with cardinality constraints. In: Advances in Global Optimization. Springer Proceedings in Mathematics Statistics, vol. 95. New York: Springer, 2015, 3–14

    Google Scholar 

  10. Burdakov O P, Kanzow C, Schwartz A. Mathematical programs with cardinality constraints: Reformulation by complementarity-type constraints and a regularization method. SIAM J Optim, 2016, 26: 397–425

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  12. Červinka M, Kanzow C, Schwartz A. Constraint qualifications and optimality conditions of cardinality-constrained optimization problems. Math Program, 2016, doi: 10.1007/s10107-016-0986-6

    Google Scholar 

  13. d’Aspremont A, Ghaoui L El, Jordan M I, et al. A direct formulation for sparse PCA using semidefinite programming. SIAM Rev, 2007, 49: 434–448

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev A D, Rockafellar R T. Characterization of strong regularity for variational inequalities over polyhedral convex sets. SIAM J Optim, 1996, 7: 1087–1105

    Article  MathSciNet  MATH  Google Scholar 

  16. Flegel M L, Kanzow C, Outrata J V. Optimality conditions for disjunctive programswith application to mathematical programs with equilibrium constraints. Set-Valued Anal, 2007, 15: 139–162

    Article  MathSciNet  MATH  Google Scholar 

  17. Henrion R, Mordukhovich B S, Nam N M. Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability. SIAM J Optim, 2010, 20: 2199–2227

    Article  MathSciNet  MATH  Google Scholar 

  18. Henrion R, Outrata J V. On calculating the normal cone to a finite union of convex polyhedra. Optimization, 2008, 57: 57–78

    Article  MathSciNet  MATH  Google Scholar 

  19. Koh K, Kim S J, Boyd S. An interior-point method for large-scale l 1-regularized logistic regression. J Mach Learn Res, 2007, 8: 1519–1555

    MathSciNet  MATH  Google Scholar 

  20. Li X, Song W. The first-order necessary conditions for sparsity constrained optimization in finite dimensional spaces. J Oper Res Soc China, 2015, 3: 521–535

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu J, Chen J, Ye J. Large-scale sparse logistic regression. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2009, 547–556

    Chapter  Google Scholar 

  22. Lu Z. Optimization over sparse symmetric sets via a nonmonotone projected gradient method. ArXiv:1509.08581, 2015

    Google Scholar 

  23. Lu Z, Zhang Y. Sparse approximation via penalty decomposition methods. SIAM J Optim, 2013, 23: 2448–2478

    Article  MathSciNet  MATH  Google Scholar 

  24. Moghaddam B, Weiss Y, Avidan S. Generalized spectral bounds for sparse LDA. In: Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006, 641–648

    Google Scholar 

  25. Mordukhovich B S. Variational Analysis and Generalized Differentiation I: Basic Theory, II: Applications. Berlin: Springer, 2006

    Google Scholar 

  26. Mordukhovich B S, Sarabi M E. Generalized differentiation of piecewise linear functions in second-order variational analysis. Nonlinear Anal, 2016, 132: 240–273

    Article  MathSciNet  MATH  Google Scholar 

  27. Pan L L, Xiu N H, Zhou S L. On solutions of sparsity constrained optimization. J Oper Res Soc China, 2015, 3: 421–439

    Article  MathSciNet  MATH  Google Scholar 

  28. Robinson S M. Some continuity properties of polyhedral multifunctions. Math Program Study, 1981, 14: 206–214

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar R T, Wets R J. Variational Analysis. Berlin: Springer, 1998

    Book  MATH  Google Scholar 

  30. Song W, Wang Q. Optimality conditions for disjunctive optimization in reflexive Banach spaces. J Optim Theory Appl, 2015, 164: 436–454

    Article  MathSciNet  MATH  Google Scholar 

  31. Zass R, Shashua A. Nonnegative sparse PCA. In: Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2006, 1561–1568

    Google Scholar 

  32. Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. J Comput Graph Stat, 2006, 15: 265–286

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11431002) and Shandong Province Natural Science Foundation (Grant No. ZR2016AM07). The authors thank two anonymous referees whose insightful comments helped us a lot to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiLi Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Xiu, N. & Fan, J. Optimality conditions for sparse nonlinear programming. Sci. China Math. 60, 759–776 (2017). https://doi.org/10.1007/s11425-016-9010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9010-x

Keywords

MSC(2010)

Navigation