Skip to main content
Log in

Phase Diagram and Specific Heat of a Nonequilibrium Curie–Weiss Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Adding activity or driving to a thermal system may modify its phase diagram and response functions. We study that effect for a Curie–Weiss model where the thermal bath switches rapidly between two temperatures. The critical temperature moves with the nonequilibrium driving, opening up a new region of stability for the paramagnetic phase (zero magnetization) at low temperatures. Furthermore, phase coexistence between the paramagnetic and ferromagnetic phases becomes possible at low temperatures. Following the excess heat formalism, we calculate the nonequilibrium thermal response and study its behaviour near phase transitions. Where the specific heat at the critical point makes a finite jump in equilibrium (discontinuity), it diverges once we add the second thermal bath. Finally, (also) the nonequilibrium specific heat goes to zero exponentially fast with vanishing temperature, realizing an extended Third Law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Hinrichsen, H.: Non-equilibrium phase transitions. Phys. A: Stat. Mech. Appl. 369(1), 1–28 (2006). https://doi.org/10.1016/j.physa.2006.04.007

    Article  MathSciNet  Google Scholar 

  2. Chakravarty, J., Jain, D.: Critical exponents for higher order phase transitions: Landau theory and RG flow. J. Stat. Mech.: Theory Exp. 2021(9), 093204 (2021). https://doi.org/10.1088/1742-5468/ac1f11

    Article  MathSciNet  Google Scholar 

  3. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge, UK (2017). https://doi.org/10.1017/9781316882603

  4. Eesley: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B Condens. Matter 33(4), 2144–2151 (1986)

  5. Trimper, S.: Master equation and two heat reservoirs. Phys. Rev. E 74, 051121 (2006). https://doi.org/10.1103/PhysRevE.74.051121

    Article  ADS  Google Scholar 

  6. Garrido, P.L., Marro, J.: Ising models with anisotropic interactions: stationary nonequilibrium states with a nonuniform temperature profile. Phys. A: Stat. Mech. Appl. 144(2), 585–603 (1987). https://doi.org/10.1016/0378-4371(87)9021

    Article  MathSciNet  Google Scholar 

  7. Maes, C., Redig, F.: Long-range spatial correlations for anisotropic zero-range processes. J. Phys. A: Math. Gen. 24(18), 4359 (1991). https://doi.org/10.1088/0305-4470/24/18/022

    Article  ADS  MathSciNet  Google Scholar 

  8. Cheraghalizadeh, J., Seifi, M., Ebadi, Z., Mohammadzadeh, H., Najafi, M.N.: Superstatistical two-temperature ising model. Phys. Rev. E 103, 032104 (2021). https://doi.org/10.1103/PhysRevE.103.032104

    Article  ADS  MathSciNet  Google Scholar 

  9. Tamayo, P., Alexander, F.J., Gupta, R.: Two-temperature nonequilibrium ising models: critical behavior and universality. Phys. Rev. E 50, 3474–3484 (1994). https://doi.org/10.1103/PhysRevE.50.3474

    Article  ADS  Google Scholar 

  10. Borchers, N., Pleimling, M., Zia, R.K.P.: Nonequilibrium statistical mechanics of a two-temperature ising ring with conserved dynamics. Phys. Rev. E 90, 062113 (2014). https://doi.org/10.1103/PhysRevE.90.062113

    Article  ADS  Google Scholar 

  11. Rácz, Z., Zia, R.K.P.: Two-temperature kinetic ising model in one dimension: steady-state correlations in terms of energy and energy flux. Phys. Rev. E 49, 139–144 (1994). https://doi.org/10.1103/PhysRevE.49.139

    Article  ADS  Google Scholar 

  12. Lecomte, V., Racz, Z., Wijland, F.: Energy flux distribution in a two-temperature ising model. J. Stat. Mech. Theory Exp. (2004). https://doi.org/10.1088/1742-5468/2005/02/P02008

    Article  Google Scholar 

  13. Mazilu, I., Williams, H.T.: Exact energy spectrum of a two-temperature kinetic ising model. Phys. Rev. E (2009). https://doi.org/10.1103/physreve.80.061109

    Article  Google Scholar 

  14. Lavrentovich, M.O.: Steady-state properties of coupled hot and cold ising chains. J. Phys. A: Math. Theor. 45(8), 085002 (2012). https://doi.org/10.1088/1751-8113/45/8/085002

    Article  ADS  MathSciNet  Google Scholar 

  15. Dattagupta, S., Puri, S.: Dissipative Phenomena in Condensed Matter. Springer Series in Materials Science. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-06758-1

  16. Khodabandehlou, F., Maes, C., Netočný, K.: A Nernst heat theorem for nonequilibrium jump processes. J. Chem. Phys. 158(20), 204112 (2023). https://doi.org/10.1063/5.0142694

    Article  ADS  Google Scholar 

  17. Kochmań ski, M., Paszkiewicz, T., Wolski, S.: Curie–Weiss magnet—a simple model of phase transition. Eur. J. Phys. 34(6), 1555–1573 (2013) https://doi.org/10.1088/0143-0807/34/6/1555

  18. Mouritsen, O.G., Frank, B., Mukamel, D.: Cubic ising lattices with four-spin interactions. Phys. Rev. B 27, 3018–3031 (1983). https://doi.org/10.1103/PhysRevB.27.3018

    Article  ADS  Google Scholar 

  19. Oitmaa, J., Gibberd, R.W.: Critical behaviour of two ising models with four-spin interactions. J. Phys. C: Solid State Phys. 6(13), 2077 (1973). https://doi.org/10.1088/0022-3719/6/13/008

    Article  ADS  Google Scholar 

  20. Ho-Ting-Hun, J., Oitmaa, J.: The ising model on the tetrahedron lattice. iii. Four-spin interactions. J. Phys. A: Math. Gen. 9(12), 2125 (1976). https://doi.org/10.1088/0305-4470/9/12/016

    Article  ADS  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1. Course of Theoretical Physics, vol. 5. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  22. Hohenberg, P.C., Krekhov, A.P.: An introduction to the ginzburg-landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015) https://doi.org/10.1016/j.physrep.2015.01.001 . An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

  23. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985). https://doi.org/10.1007/b138374

    Book  Google Scholar 

  24. Maes, C.: Local detailed balance. SciPost Physics Lecture Notes, vol. 32 (2021). https://doi.org/10.21468/SciPostPhysLectNotes.32

  25. Arrhenius, S.: Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zenodo (1889). https://doi.org/10.1515/zpch-1889-0408

    Article  Google Scholar 

  26. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107–115 (1935). https://doi.org/10.1063/1.1749604

    Article  ADS  Google Scholar 

  27. Bena, I.: Dichotomous Markov noise: exact results for out-of-equilibrium systems. Int. J. Mod. Phys. B 20(20), 2825–2888 (2006). https://doi.org/10.1142/s0217979206034881

    Article  ADS  MathSciNet  Google Scholar 

  28. Maes, C., Netočný, K.: Nonequilibrium calorimetry. J. Stat. Mech.: Theory Exp. 2019(11), 114004 (2019). https://doi.org/10.1088/1742-5468/ab4589

    Article  MathSciNet  Google Scholar 

  29. Boksenbojm, E., Maes, C., Netočný, K., Pešek, J.: Heat capacity in nonequilibrium steady states. EPL (Europhys. Lett.) 96(4), 40001 (2011). https://doi.org/10.1209/0295-5075/96/40001

    Article  ADS  Google Scholar 

  30. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, Second Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2023). https://doi.org/10.1137/1.9781611977448

  31. Dolai, P., Maes, C., Netočný, K.: Calorimetry for active systems. SciPost Phys. (2023). https://doi.org/10.21468/scipostphys.14.5.126

    Article  MathSciNet  Google Scholar 

  32. Gottlieb, A.D.: Markov Transitions and the Propagation of Chaos (2000). https://doi.org/10.48550/arXiv.math/0001076

  33. Chaintron, L.-P., Diez, A.: Propagation of chaos: a review of models, methods and applications. I. Models and methods. Kinet. Relat. Models 15(6), 895 (2022). https://doi.org/10.3934/krm.2022017

    Article  MathSciNet  Google Scholar 

  34. Agarwal, R.P., Lakshmikantham, V.: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. World Scientific, Singapore (1993). https://doi.org/10.1142/1988

    Book  Google Scholar 

  35. Inc., W.R.: Mathematica, Version 13.1.0.0. Champaign, IL (2022). https://www.wolfram.com/mathematica

  36. Gopal, E.: Specific Heats at Low Temperatures. The International Cryogenics Monograph Series. Springer, New York (2012). https://books.google.be/books?id=Rj3jBwAAQBAJ

  37. Dolai, P., Maes, C.: Towards many-body nonequilibrium calorimetry: specific heat for a driven fermionic array (2023). https://doi.org/10.48550/arXiv.2301.04524

Download references

Acknowledgements

The two-temperature Curie–Weiss model of the present paper was first proposed by Karel Netočný to study the nonequilibrium phase diagram. We are grateful for his suggestion. Furthermore, the authors thank the reviewers for their thoughtful comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Beyen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Yvan Velenik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Example: \(N = 2\)

A Example: \(N = 2\)

When the system consists of two spins, the magnetization becomes \(m^{N = 2} = \frac{\sigma _1+\sigma _2}{2} \in \{-1,0,1\}\), and energy \(E(\sigma ) = -J_g\frac{1+\sigma _1 \sigma _2}{2} \in \{0,-J_g\}\), where \(J_g = J \big ( 1 + \frac{g}{2} \big )\). Therefore, the process reduces to a two-level switch where g only affects the energy difference.

First, the heat fluxes (11), \(P_{a,N=2}(\sigma )\) become

$$\begin{aligned} P_{a,N}(1,1) = P_{a,N}(-1,-1)&= -\frac{2J_g \nu }{(J_g\beta _{a})^n} e^{- \beta _{a} \frac{J_g}{2}}, \\ P_{a,N}(1,-1) = P_{a,N}(-1,1)&= \frac{2J_g \nu }{(J_g\beta _{a})^n} e^{\beta _{a} \frac{J_g}{2}} \end{aligned}$$
Fig. 9
figure 9

Heat capacities vs \(\frac{1}{\beta } = \big ( J_g \frac{\beta _1 + \beta _2}{2} \big )^{-1}\) for \(n = 3\) and \(\delta = J_g \big ( \beta _2 - \beta _1 \big ) = 1\). The graphs stop at \(\beta = \frac{\delta }{2}\) where \(\beta _1 = 0\). We plot the total equilibrium result \(C_{\text {eq, tot}}\) with a dashed line. (Made using Mathematica version 13.1.0.0 [35].)

The quasipotential \(V_a^{(N=2)}\) in (13) takes the form \(V_a^{(N = 2)}= (V_{a1}, V_{a2}, V_{a2}, V_{a1})\) with

$$\begin{aligned} V_{a1}&= - v_{ab} \ e^{-\frac{1}{2} \left( 2 \beta _a+\beta _b\right) J_g} \left( e^{\frac{\beta _a J_g}{2}} \beta _a^n+e^{\frac{\beta _b J_g}{2}} \beta _b^n\right) \\ V_{a 2}&= v_{ab} \ e^{-\frac{\beta _a J_g}{2}} \left( e^{\frac{\beta _b J_g}{2}} \beta _a^n+e^{\frac{\beta _a J_g}{2}} \beta _b^n\right) \\ v_{ab}&= J_g \left( e^{\beta _a J_g}+1\right) \beta _b^n \left( 2 \beta _1^n \cosh \left( \frac{\beta _2 J_g}{2}\right) +2 \beta _2^n \cosh \left( \frac{\beta _1 J_g}{2}\right) \right) ^{-2} \end{aligned}$$

where \(a \ne b\). That, from (15), leads to the heat capacities,

$$\begin{aligned}&C_{aa}^{(N = 2)} =k_B \ {\tilde{C}}_{ab} \ \beta _a \ \beta _b^{2 n} \left( J_g \beta _a \beta _b^n + J_g \cosh {\frac{J_g}{2} (\beta _a-\beta _b)} - 2 \ n \ \beta _a^n \sinh {\frac{J_g}{2} (\beta _a-\beta _b)} \right) \\&C_{ab}^{(N = 2)} = k_B \ {\tilde{C}}_{ab} \ \beta _a^n \ \beta _b^{n+1} \left( J_g \beta _a^n \beta _b + J_g \beta _b^{n+1} \cosh {\frac{J_g}{2} (\beta _a-\beta _b)} + 2 \ n \ \beta _b^n \sinh {\frac{J_g}{2} (\beta _a-\beta _b)} \right) \\&{\tilde{C}}_{a b} = \frac{J_g}{4} \cosh {\frac{J \beta _a}{2}} \left( \beta _1^n \cosh \left( \frac{\beta _2 J_g}{2}\right) + \beta _2^n \cosh \left( \frac{\beta _1 J_g}{2}\right) \right) ^{-3} \end{aligned}$$

where again \(a \ne b\). In equilibrium \(\beta _2 = \beta _1\), all of them reduce to

$$\begin{aligned} C_{\text {eq,}ab}^{(N = 2)} = k_B\frac{\beta _1^2 J_g^2 e^{\beta _1 J_g}}{4 \left( e^{\beta _1 J_g}+1\right) ^2} \end{aligned}$$

which is a quarter of the total equilibrium heat capacity \(C_\text {eq,tot}\) for a two-level system [36].

The heat capacities are plotted in Fig. 9, where some are seen to obtain negative values, here for \(n = 3\). As discussed in [37], this happens due to a negative correlation between the quasipotential \(V_a^{(N)}\) and the change in stationary distribution \(\rho ^s\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyen, A., Maes, C. & Maes, I. Phase Diagram and Specific Heat of a Nonequilibrium Curie–Weiss Model. J Stat Phys 191, 56 (2024). https://doi.org/10.1007/s10955-024-03268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03268-x

Keywords

Navigation