Skip to main content
Log in

Relativistic Stochastic Mechanics I: Langevin Equation from Observer’s Perspective

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two different versions of relativistic Langevin equation in curved spacetime background are constructed, both are manifestly general covariant. It is argued that, from the observer’s point of view, the version which takes the proper time of the Brownian particle as evolution parameter contains some conceptual issues, while the one which makes use of the proper time of the observer is more physically sound. The two versions of the relativistic Langevin equation are connected by a reparametrization scheme. In spite of the issues contained in the first version of the relativistic Langevin equation, it still permits to extract the physical probability distributions of the Brownian particles, as is shown by Monte Carlo simulation in the example case of Brownian motion in \((1+1)\)-dimensional Minkowski spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data used in this research was generated from Eqs. (28) and (29) by use of numeric programs written in C++ and python. The P-values given in Sect. 5 are calculated using Wolfram Language. All programs are available upon request.

Notes

  1. Since the space time is assumed to be endowed with a non-degenerate metric \(g_{\mu \nu }(x)\), we can identify the cotangent vector at any event with its dual tangent vector. Therefore, we are free to take the tangent space description instead of the cotangent space description in this work.

References

  1. Jüttner, F.: Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. der Phys. 339, 856–882 (1911)

    Article  ADS  Google Scholar 

  2. de Groot, S.R., van Leeuwen, W.A., van Weert, Ch.G.: Relativistic Kinetic Theory: Principles and Applications. North-Holiand Publishing Company, North-Holiand (1980)

    Google Scholar 

  3. Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Applications, vol. 22. Springer, Berlin (2002)

    Book  Google Scholar 

  4. Vereshchagin, G.V., Aksenov, A.G.: Relativistic Kinetic Theory: With Applications in Astrophysics and Cosmology. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  5. Acuña-Cárdenas, R.O., Gabarrete, C., Sarbach, O.: An introduction to the relativistic kinetic theory on curved spacetimes. Gen. Relat. Gravit. 54(3), 1–120 (2022)

    Article  MathSciNet  Google Scholar 

  6. Debbasch, F., Mallick, K., Rivet, J.P.: Relativistic Ornstein–Uhlenbeck process. J. Stat. Phys. 88(3), 945–966 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Debbasch, F.: A diffusion process in curved spacetime. J. Math. Phys. 45(7), 2744–2760 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dunkel, J., Hänggi, P.: Theory of relativistic Brownian motion: the (1+1)-dimensional case. Phys. Rev. E 71(1), 016124 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dunkel, J., Hänggi, P.: Theory of relativistic Brownian motion: The (1+ 3)-dimensional case. Phys. Rev. E 72(3), 036106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fingerle, A.: Relativistic fluctuation theorems. C. R. Phys. 8(5–6), 696–713 (2007)

    Article  ADS  Google Scholar 

  11. Franchi, J., Le Jan, Y.: Relativistic diffusions and Schwarzschild geometry. Commun. Pure Appl. Math. 60(2), 187–251 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dunkel, J., Hänggi, P.: Relativistic Brownian motion. Phys. Rep. 471(1), 1–73 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dunkel, J., Hänggi, P., Weber, S.: Time parameters and Lorentz transformations of relativistic stochastic processes. Phys. Rev. E 79(1), 010101 (2009)

    Article  ADS  Google Scholar 

  14. Herrmann, J.: Diffusion in the special theory of relativity. Phys. Rev. E 80(5), 051110 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Herrmann, J.: Diffusion in the general theory of relativity. Phys. Rev. D 82(2), 024026 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Haba, Z.: Relativistic diffusion with friction on a pseudo-Riemannian manifold. Class. Quant. Grav. 27(9), 095021 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ding, M., Tu, Z., Xing, X.: Covariant formulation of nonlinear Langevin theory with multiplicative gaussian white noises. Phys. Rev. Res. 2(3), 033381 (2020)

    Article  Google Scholar 

  18. Ding, M., Xing, X.: Covariant nonequilibrium thermodynamics from Ito-Langevin dynamics. Phys. Rev. Res. 4(3), 033247 (2022)

    Article  Google Scholar 

  19. Einstein, A.: Eine neue bestimmung der moleküldimensionen, PhD thesis, ETH Zurich (1905)

  20. Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen, Ann. der Phys. 4 (1905)

  21. Smoluchowski, M.: Zur kinetischen theorie der Brownschen molekular bewegung und der suspensionen. Ann. der Phys. 21, 756–780 (1906)

    Article  Google Scholar 

  22. Langevin, P.: Sur la théorie du mouvement Brownien. C. R. Acad. Sci. 146, 530–533 (1908)

    Google Scholar 

  23. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6(4), 504–515 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  24. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theoret. Phys. 33(3), 423–455 (1965)

    Article  ADS  Google Scholar 

  25. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

    Article  ADS  Google Scholar 

  26. Sekimoto, K.: Langevin equation and thermodynamics. Prog. Theoret. Phys. Suppl. 130, 17–27 (1998)

    Article  ADS  Google Scholar 

  27. Sekimoto, K.: Stochastic Energetics, vol. 799. Springer, Berlin (2010)

    Google Scholar 

  28. Sarbach, O., Zannias, T.: The geometry of the tangent bundle and the relativistic kinetic theory of gases. Class. Quant. Gravit. 31(8), 085013 (2014)

    Article  ADS  Google Scholar 

  29. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, vol. 3. Springer, Berlin (1985)

    Book  Google Scholar 

  30. Hsu, E.P.: Stochastic Analysis on Manifolds, Number 38. American Mathematical Society, New York (2002)

    Google Scholar 

  31. Armstrong, J., Brigo, D.: Coordinate-free stochastic differential equations as jets

  32. Armstrong, J., Brigo, D.: Intrinsic stochastic differential equations as jets. Proc. R. Soc. A 474(2210), 20170559 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Klimontovich, Y.L.: Nonlinear Brownian motion. Phys-Usp 37(8), 737 (1994)

    Article  ADS  Google Scholar 

  34. Meyer, P.A.: A Differential Geometric Formalism for the Itô calculus Stochastic Integrals: Proceedings of the LMS Durham Symposium July 7–17, 1980. Springer, Berlin (1981)

    Google Scholar 

  35. Schwartz, L.: Semimartingales and Their Stochastic Calculus on Manifolds. Gaetan Morin Editeur Ltee, Boucherville (1984)

    Google Scholar 

  36. Émery, M.: Stochastic Calculus in Manifolds. Springer, Berlin (2012)

    Google Scholar 

  37. Kuipers, F.: Stochastic quantization on Lorentzian manifolds. J. High Energy Phys. 2021(5), 1–51 (2021)

    Article  MathSciNet  Google Scholar 

  38. Kuipers, F.: Stochastic quantization of relativistic theories. J. Math. Phys. 62(12), 122301 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kuipers, F. Stochastic Mechanics: The Unification of Quantum Mechanics with Brownian Motion. Springer Cham, 2023. ISBN: 9783031314476

  40. Paraguassu, P.V., Morgado, W.A.M.: Heat distribution of relativistic Brownian motion. Eur. Phys. J. B 94, 197 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under the Grant No. 12275138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Communicated by Jae Dong Noh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, T. & Zhao, L. Relativistic Stochastic Mechanics I: Langevin Equation from Observer’s Perspective. J Stat Phys 190, 193 (2023). https://doi.org/10.1007/s10955-023-03204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03204-5

Keywords

Navigation