Skip to main content
Log in

Rigorous Computation of Linear Response for Intermittent Maps

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a rigorous numerical scheme for the approximation of the linear response of the invariant density of a map with an indifferent fixed point with respect to the order of the fixed point, with explicit and computed estimates for the error and all the involved constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The code implimented for this work will be published online as soon as possible and is available upon request.

Notes

  1. See also earlier related work [33]. See also [27] for a comprehensive historical account including literature from physics.

  2. See also [32] for related work on dynamical determinants.

  3. Note that in the finite measure case, \(h^*\) is the derivative of the non-normalized density \(h_\epsilon \). The advantage in working with \(h_{\epsilon }\) is reflected in keeping the operator \(F_{\epsilon }\) linear and to accommodate the infinite measure preserving case. In the finite measure case, once the derivative of \(h_{\epsilon }\) is obtained, the derivative of the normalized density can be easily computed. Indeed, \(h_\epsilon =h +\epsilon h^*+o(\epsilon )\). Consequently, \(\int h_\epsilon =\int h +\epsilon \int h^*+o(\epsilon )\). Hence, \(\partial _{\epsilon }(\frac{h_\epsilon }{\int h_\epsilon }){|}_{\epsilon =0}=h^*-h\int h^*\).

  4. The existence of a uniform constant \(D>0\) is implied by condition (3).

  5. it is straightforward to see that these inequalities imply Lasota–Yorke inequalities on \(W^{k,1}\) with weak norm \(W^{k-1,1}\).

  6. It should be noted that finding the integral of \(A_0{\hat{h}}_n'\) and \(B_0{\hat{h}}_n\) is not easy so in our calculations instead of a true Ulam approximation where \(\zeta \) corresponds to the value that gives the integral we simply use the midpoint; this error is taken into account explicitly and depends on the regularity estimates we have on \(h_{\eta }\).

References

  1. Antown, F., Dragičević, D., Froyland, G.: Optimal linear responses for Markov chains and stochastically perturbed dynamical systems. J. Stat. Phys. 170(6), 1051–1087 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. Antown, F., Froyland, G., Junge, O.: Linear response for the dynamic Laplacian and finite-time coherent sets. Nonlinearity 34, 3337 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aspenberg, M., Baladi, V., Leppänen, J., Persson, T.: On the fractional susceptibility function of piecewise expanding maps. arXiv Preprint (2019). arXiV:1910.00369

  4. Bahsoun, W., Saussol, B.: Linear response in the intermittent family: differentiation in a weighted \(C^0\)-norm. Discrete Contin. Dynam. Syst. 36(12), 6657–6668 (2016)

    Article  Google Scholar 

  5. Bahsoun, W., Bose, C., Duan, Y.: Rigorous pointwise approximations for invariant densities of non-uniformly expanding maps. Ergod. Theory Dyn. Syst. 35, 1028–1044 (2013). https://doi.org/10.1017/etds.2013.91

    Article  MathSciNet  Google Scholar 

  6. Bahsoun, W., Galatolo, S., Nisoli, I., Niu, X.: A rigorous computational approach to linear response. Nonlinearity 31(3), 1073–1109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bahsoun, W., Ruziboev, M., Saussol, B.: Linear response for random dynamical systems. Adv. Math. 364, 107011 (2020)

    Article  MathSciNet  Google Scholar 

  8. Baladi, V.: On the susceptibility function of piecewise expanding interval maps. Commun. Math. Phys. 275, 839–859 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Baladi, V.: Linear response, or else. In: Proceedings of the International Congress of Mathematicians, Seoul 2014. vol. III, pp. 525–545. Kyung Moon Sa, Seoul (2014)

  10. Baladi, V., Smania, D.: Fractional susceptibility functions for the quadratic family: Misiurewicz–Thurston parameters. Commun. Math. Phys. 385, 1957–2007 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Baladi, V., Todd, M.: Linear response for intermittent maps. Commun. Math. Phys. 347(3), 857–874 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007)

    Article  MathSciNet  Google Scholar 

  13. Butterly, O., Kiamari, N., Liverani, C.: Locating Ruelle–Pollicott resonances. arXiv Preprint (2012). arXiv:2012.13145

  14. Chandramoorthy N., Wang Q.: A computable realization of Ruelle’s formula for linear response of statistics in chaotic systems. arXiv Preprint (2002). arXiv:2002.04117

  15. Chandramoorthy N., Wang Q.: Efficient computation of linear response of chaotic attractors with one-dimensional unstable manifolds. arXiv Preprint (2013). arXiv:2103.08816

  16. Choudhury, B.: The Riemann zeta-function and its derivatives. Proc. Math. Phys. Sci. 450, 477–499 (1995)

    MathSciNet  Google Scholar 

  17. de Lima, A., Smania, D.: Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps. J. Inst. Math. Jussieu 17(3), 673–733 (2018)

    Article  MathSciNet  Google Scholar 

  18. Dolgopyat, D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155, 389–449 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dragičević, D., Sedro, J.: Statistical stability and linear response for random hyperbolic dynamics. Ergod. Theory Dyn. Syst. 43(2), 515–544 (2020)

    Article  MathSciNet  Google Scholar 

  20. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)

    Article  ADS  Google Scholar 

  21. Galatolo, S., Giulietti, P.: A linear response for dynamical systems with additive noise. Nonlinearity 32(6), 2269–2301 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Galatolo, S., Nisoli, I.: An elementary approach to rigorous approximation of invariant measures. SIAM J. Appl. Dyn. Syst. 13(2), 958–985 (2014)

    Article  MathSciNet  Google Scholar 

  23. Galatolo, S., Pollicott, M.: Controlling the statistical properties of expanding maps. Nonlinearity 30(7), 2737–2751 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Galatolo, S., Sedro, J.: Quadratic response of random and deterministic dynamical systems. Chaos 30, 023113 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Galatolo, S., Nisoli, I., Saussol, S.: An elementary way to rigorously estimate convergence to equilibrium and escape rates. J. Comput. Dyn. 2(1), 51–64 (2015)

    Article  MathSciNet  Google Scholar 

  26. Galatolo, S., Monge, M., Nisoli, I., Poloni, F.: A general framework for the rigorous computation of invariant densities and the course-fine strategy. Chaos Solitons Fractals 170, 113329 (2023)

    Article  Google Scholar 

  27. Gottwald, G.: Introduction to focus issue: linear response theory: potentials and limits. Chaos 30(2), 020401 (2020). https://doi.org/10.1063/5.0003135

    Article  ADS  Google Scholar 

  28. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergod. Theory Dyn. Syst. 26, 189–217 (2006)

    Article  MathSciNet  Google Scholar 

  29. Gutiérrez, M.S., Lucarini, V.: Response and sensitivity using Markov chains. J. Stat. Phys. 179(5–6), 1572–1593 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast Fourier transform. IEEE ASSP Mag. 1(4), 14–21 (1984)

    Article  Google Scholar 

  31. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  32. Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete Contin. Dyn. Syst. 39(2), 927–958 (2019)

    Article  MathSciNet  Google Scholar 

  33. Katok, A., Knieper, G., Pollicott, M., Weiss, H.: Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98(3), 581–597 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kloeckner, B.: The linear request problem. Proc. Am. Math. Soc. 146(7), 2953–2962 (2018)

    Article  MathSciNet  Google Scholar 

  35. Koltai, P., Lie, H.-C., Plonka, M.: Fréchet differentiable drift dependence of Perron–Frobenius and Koopman operators for non-deterministic dynamics. Nonlinearity 32(11), 4232–4257 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Korepanov, A.: Linear response for intermittent maps with summable and nonsummable decay of correlations. Nonlinearity 29(6), 1735–1754 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ledoux, V., Moroz, G.: Evaluation of Chebyshev polynomials on intervals and application to root finding. In: Mathematical Aspects of Computer and Information Sciences 2019, November 2019, Gebze, Turkey. hal-02405752 (2019)

  38. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19, 671–685 (1999)

    Article  MathSciNet  Google Scholar 

  39. Lucarini, V.: Response operators for Markov processes in a finite state space: radius of convergence and link to the response theory for Axiom A systems. J. Stat. Phys. 162(2), 312–333 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Ni, A.: Linear response algorithm for differentiating stationary measures of chaos. arXiv preprint (2020). arXiv:2009.00595

  41. Ni, A.: Approximating linear response by nonintrusive shadowing algorithms. SIAM J. Numer. Anal. 59(6), 2843–2865 (2021)

    Article  MathSciNet  Google Scholar 

  42. Pollicott, M., Vytnova, P.: Linear response and periodic points. Nonlinearity 29(10), 3047–3066 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys. 187, 227–241 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  44. Sedro, J.: Pre-threshold fractional susceptibility functions at Misiurewicz parameters. Nonlinearity 34(10), 7174 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. Sélley, F., Tanzi, M.: Linear response for a family of self-consistent transfer operators. Commun. Math. Phys. 382(3), 1601–1624 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2018)

    Google Scholar 

  47. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  48. Wormell, C.L.: Spectral Galerkin methods for transfer operators in uniformly expanding dynamics. Numer. Math. 14, 421–463 (2019)

    Article  MathSciNet  Google Scholar 

  49. Wormell, C.L.: Efficient computation of statistical properties of intermittent dynamics. arXiv Preprint (2021). arXiv:2106.01498

  50. Wormell, C., Gottwald, G.: Linear response for macroscopic observables in high-dimensional systems. Chaos 29, 113–127 (2019)

    Article  MathSciNet  Google Scholar 

  51. Xiang, S., Chen, X., Wang, H.: Error bounds for approximation in Chebyshev points. Numer. Math. 116, 463–491 (2010). https://doi.org/10.1007/s00211-010-0309-4

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Bahsoun and Prof. Galatolo for their guidance and assistance, their patience and attention, and also the reviewers and editor for their helpful remarks. Isaia Nisoli is partially supported by CNPq, CAPES (through the programs PROEX and the CAPES-STINT project “Contemporary topics in non uniformly hyperbolic dynamics”). The author is currently under “Afastamento do país para qualificação profissional, apresentação de trabalhos técnico-cientìficos e colaboração institucional do pessoal docente e técnico-administrativo” from UFRJ and is currently a Specially Appointed Associate Professor at Hokkaido University, and would like to thank Prof. Yuzuru Sato for the hospitality and scientific discussions.The research of Toby Taylor-Crush was supported by EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby Taylor-Crush.

Ethics declarations

Conflict of interest

The authors declared that they have no affiliations or involvement with any organization or entity with any financial interest in the subject matter or materials discussed in this work.

Additional information

Communicated by Marco Lenci.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Computing Derivatives

Appendix A: Computing Derivatives

In order to calculate \(A_0\), \(B_0\), \(a_\omega \) and \(b_\omega \) we use an iterative formula. We start with

$$\begin{aligned} g_\omega \circ T_\omega (x)=x \end{aligned}$$

from which we use the chain rule to get

$$\begin{aligned} (g_\omega \circ T_\omega )'(x)&=g_\omega '\circ T_\omega (x)\cdot T_\omega '(x)=1\\ \implies g_\omega '(x)&=\frac{1}{T_\omega '\circ g_\omega (x)} \end{aligned}$$

and

$$\begin{aligned} \partial _\alpha (g_\omega \circ T_\omega )(x)&=\partial _\alpha g_\omega \circ T_\omega (x)+ g_\omega '\circ T_\omega (x)\cdot \partial _\alpha T_\omega (x)=0\\ \implies \partial _\alpha g_\omega (x)&=-\frac{\partial _\alpha T_\omega \circ g_\omega (x)}{T_\omega '\circ g_\omega (x)}. \end{aligned}$$

We then use further chain rules to get

$$\begin{aligned} (g_\omega '\circ T_\omega )'(x)&=g_\omega ''\circ T_\omega (x)\cdot T_\omega '(x)=-\frac{T_\omega ''(x)}{(T_\omega '(x))^2}\\ \implies g_\omega ''(x)&=-\frac{T_\omega ''\circ g_\omega (x)}{(T_\omega '\circ g_\omega (x))^3} \end{aligned}$$

and

$$\begin{aligned} \partial _\alpha (g_\omega '\circ T_\omega )(x)&=\partial _\alpha g_\omega ' \circ T_\omega (x)+ g_\omega ''\circ T_\omega (x)\cdot \partial _\alpha T_\omega (x)=\partial _\alpha \frac{1}{T_\omega '(x)}\\ \implies \partial _\alpha g_\omega '(x)&=\frac{T_\omega ''\circ g_\omega (x)\cdot \partial _\alpha T_\omega \circ g_\omega (x)}{(T_\omega '\circ g_\omega )^3}-\frac{\partial _\alpha T_\omega '\circ g_\omega (x)}{(T_\omega '\circ g_\omega (x))^2}. \end{aligned}$$

We already can calculate \(g_\omega \) so we need to calculate \(\partial _\alpha T_\omega \), \(T_\omega '\), \(\partial _\alpha T_\omega '\) and \(T_\omega ''\). Note that \(T_\omega = T_0^{n}\circ T_1\) where \(|\omega |=n\), so

$$\begin{aligned} (T_0^{n}\circ T_1)'&=(T_0^{n})'\circ T_1\cdot T_1'\\ \partial _\alpha (T_0^{n}\circ T_1)&=\partial _\alpha (T_0^{n})\circ T_1 + (T_0^{n})'\circ T_1\cdot \partial _\alpha T_1\\ (T_0^{n}\circ T_1)''&=(T_0^{n})''\circ T_1\cdot (T_1')^2+(T_0^{n})'\circ T_1\cdot T_1''\\ \partial _\alpha (T_0^{n}\circ T_1)'&=\partial _\alpha (T_0^{n})'\circ T_1\cdot T_1' + (T_0^{n})''\circ T_1\cdot T_1'\cdot \partial _\alpha T_1+(T_0^{n})'\circ T_1\cdot \partial _\alpha T_1' \end{aligned}$$

which we may write as a matrix

$$\begin{aligned} \begin{pmatrix} T_\omega '\\ \partial _\alpha T_\omega \\ T_\omega ''\\ \partial _\alpha T_\omega ' \end{pmatrix}= \begin{pmatrix} T_1' &{} 0 &{} 0 &{} 0\\ \partial _\alpha T_1 &{} 1 &{} 0 &{} 0\\ T_1''&{} 0 &{} (T_1')^2 &{} 0\\ \partial _\alpha T_1' &{} 0 &{} T_1'\partial _\alpha T_1 &{} T_1' \end{pmatrix}\cdot \begin{pmatrix} (T_0^{n})'\circ T_1\\ \partial _\alpha (T_0^{n})\circ T_1\\ (T_0^{n})''\circ T_1\\ \partial _\alpha (T_0^{n})'\circ T_1 \end{pmatrix}. \end{aligned}$$

By the same logic we may write

$$\begin{aligned}{} & {} \begin{pmatrix} T_\omega '\\ \partial _\alpha T_\omega \\ T_\omega ''\\ \partial _\alpha T_\omega ' \end{pmatrix}= \begin{pmatrix} T_1' &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_1''&{}\quad 0 &{}\quad (T_1')^2 &{}\quad 0\\ \partial _\alpha T_1' &{}\quad 0 &{}\quad T_1'\partial _\alpha T_1 &{}\quad T_1' \end{pmatrix}\\{} & {} \cdot \begin{pmatrix} T_0'\circ T_1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_0\circ T_1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_0''\circ T_1&{}\quad 0 &{}\quad (T_0'\circ T_1)^2 &{}\quad 0\\ \partial _\alpha T_0'\circ T_1 &{}\quad 0 &{}\quad T_0'\circ T_1\partial _\alpha T_0\circ T_1 &{}\quad T_0'\circ T_1 \end{pmatrix} \begin{pmatrix} (T_0^{n-1})'\circ T_0\circ T_1\\ \partial _\alpha (T_0^{n-1})\circ T_0\circ T_1\\ (T_0^{n-1})''\circ T_0\circ T_1\\ \partial _\alpha (T_0^{n-1})'\circ T_0\circ T_1 \end{pmatrix}. \end{aligned}$$

and use induction to give a series of matrices such that

$$\begin{aligned}{} & {} \begin{pmatrix} T_\omega '\\ \partial _\alpha T_\omega \\ T_\omega ''\\ \partial _\alpha T_\omega ' \end{pmatrix}= \begin{pmatrix} T_1' &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_1''&{}\quad 0 &{}\quad (T_1')^2 &{}\quad 0\\ \partial _\alpha T_1' &{}\quad 0 &{}\quad T_1'\partial _\alpha T_1 &{}\quad T_1' \end{pmatrix}\\ {}{} & {} \cdot \begin{pmatrix} T_0'\circ T_1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_0\circ T_1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_0''\circ T_1&{}\quad 0 &{}\quad (T_0'\circ T_1)^2 &{}\quad 0\\ \partial _\alpha T_0'\circ T_1 &{}\quad 0 &{}\quad T_0'\circ T_1\partial _\alpha T_0\circ T_1 &{}\quad T_0'\circ T_1 \end{pmatrix}\dots \begin{pmatrix} T_0'\circ T_0^{n-1}\circ T_1\\ \partial _\alpha T_0\circ T_0^{n-1}\circ T_1\\ T_0''\circ T_0^{n-1}\circ T_1\\ \partial _\alpha T_0'\circ T_0^{n-1}\circ T_1 \end{pmatrix}. \end{aligned}$$

Using the explicit formulas for our branches we have

$$\begin{aligned}&T_0 = x(1+(2x)^\alpha )\\&T_1 = 2x-1\\&T_0' = 1+(1+\alpha )(2x)^\alpha \\&T_1' = 2\\&\partial _\alpha T_0 = (\log (x)+\log (2))2^\alpha x^{\alpha +1}\\&\partial _\alpha T_1 = 0\\&T_0'' = \alpha (1+\alpha ) 2^\alpha x^{\alpha -1}\\&T_1'' = 0\\&\partial _\alpha T_0' = (2x)^\alpha ((\alpha +1)(\log (x)+\log (2))+1)\\&\partial _\alpha T_1' = 0 \end{aligned}$$

and we are able to calculate explicitly the values \(A_0\), \(B_0\), \(a_\omega \) and \(b_\omega \). To calculate \(a_\omega \) and \(b_\omega \) we use \(g_\omega =g_1\circ g_0^{n-1}\) and we use \(T_0^{m}\circ T_1\circ g_1\circ g_0^{n-1}= g_0^{n-1-m}\) to calculate

$$\begin{aligned} \begin{pmatrix} T_\omega '\circ g_\omega \\ \partial _\alpha T_\omega \circ g_\omega \\ T_\omega ''\circ g_\omega \\ \partial _\alpha T_\omega '\circ g_\omega \end{pmatrix}= \begin{pmatrix} T_1'\circ g_\omega &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_1\circ g_\omega &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_1''\circ g_\omega &{}\quad 0 &{}\quad (T_1')^2\circ g_\omega &{}\quad 0\\ \partial _\alpha T_1'\circ g_\omega &{}\quad 0 &{}\quad T_1'\circ g_\omega \partial _\alpha T_1\circ g_\omega &{}\quad T_1'\circ g_\omega \end{pmatrix}\\ \\ \cdot \begin{pmatrix} T_0'\circ g_0^{n} &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \partial _\alpha T_0\circ g_0^{n} &{}\quad 1 &{}\quad 0 &{}\quad 0\\ T_0''\circ g_0^{n}&{}\quad 0 &{}\quad (T_0'\circ g_0^{n})^2 &{}\quad 0\\ \partial _\alpha T_0'\circ g_0^{n} &{}\quad 0 &{}\quad T_0'\circ g_0^{n}\partial _\alpha T_0\circ g_0^{n} &{}\quad T_0'\circ g_0^{n} \end{pmatrix}\dots \begin{pmatrix} T_0'\circ g_0\\ \partial _\alpha T_0\circ g_0\\ T_0''\circ g_0\\ \partial _\alpha T_0'\circ g_0 \end{pmatrix} \end{aligned}$$

where we calculate \(g_0^{m}\) using the shooting method from section 7.1.1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisoli, I., Taylor-Crush, T. Rigorous Computation of Linear Response for Intermittent Maps. J Stat Phys 190, 192 (2023). https://doi.org/10.1007/s10955-023-03174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03174-8

Keywords

Mathematics Subject Classification

Navigation