Skip to main content
Log in

Linear Response for Intermittent Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the one parameter family \({\alpha \mapsto T_{\alpha}}\) (\({\alpha \in [0,1)}\)) of Pomeau-Manneville type interval maps \({T_{\alpha}(x) = x(1+2^{\alpha} x^{\alpha})}\) for \({x \in [0,1/2)}\) and \({T_{\alpha}(x)=2x-1}\) for \({x \in [1/2, 1]}\), with the associated absolutely continuous invariant probability measure \({\mu_{\alpha}}\). For \({\alpha \in (0,1)}\), Sarig and Gouëzel proved that the system mixes only polynomially with rate \({n^{1-1/{\alpha}}}\) (in particular, there is no spectral gap). We show that for any \({\psi \in L^{q}}\), the map \({\alpha \to \int_0^{1} \psi\, d \mu_{\alpha}}\) is differentiable on \({[0,1-1/q)}\), and we give a (linear response) formula for the value of the derivative. This is the first time that a linear response formula for the SRB measure is obtained in the setting of slowly mixing dynamics. Our argument shows how cone techniques can be used in this context. For \({\alpha \ge 1/2}\) we need the \({n^{-1/{\alpha}}}\) decorrelation obtained by Gouëzel under additional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baladi V.: On the susceptibility function of piecewise expanding interval maps. Comm. Math. Phys. 275, 839–859 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baladi V.: Linear response despite critical points. Nonlinearity 21, T81–T90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baladi, V.: Linear response, or else, ICM Seoul.In: Proceedings, Volume III, 525–545 (2014) http://www.icm2014.org/en/vod/proceedings

  4. Baladi V., Marmi S., Sauzin D.: Natural boundary for the susceptibility function of generic piecewise expanding unimodal maps. Ergodic Theory Dyn. Syst. 10, 1–24 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Baladi, V., Smania, D.: Linear response formula for piecewise expanding unimodal maps. Nonlinearity 21, 677–711 (2008) (Corrigendum: Nonlinearity 25, 2203–2205 (2012))

  6. Bomfim, T., Castro, A., Varandas, P.: Differentiability of thermodynamical quantities in non-uniformly expanding dynamics. arXiv:1205.5361. To appear Adv. Math.

  7. Bruin H., Todd M.: Equilibrium states for potentials with \({\sup \phi -\inf \phi < h_{top}(f)}\). Comm. Math. Phys. 283, 579–611 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Contreras, F., Dolgopyat, D.: Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps. arXiv:1504.04214

  9. Dolgopyat D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155, 389–449 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Freitas J.M., Todd M.: Statistical stability of equilibrium states for interval maps. Nonlinearity 22, 259–281 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gouëzel S.: Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139, 29–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gouëzel S.: Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes. PhD thesis, Orsay (2004)

  13. Hairer M., Majda A.J.: A simple framework to justify linear response theory. Nonlinearity 23, 909–922 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Katok A., Knieper G., Pollicott M., Weiss H.: Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math. 98, 581–597 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Korepanov, A.: Linear response for intermittent maps with summable and non-summable decay of correlations. arXiv:1508.06571

  16. Liverani C., Saussol B., Vaienti S.: A probabilistic approach to intermittency. Ergodic Theory Dyn. Syst. 19, 671–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lucarini V., Faranda D., Wouters J., Kuna T.: Towards a general theory of extremes for observables of chaotic dynamical systems. J. Stat. Phys. 154, 723–750 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lucarini et al. V.: Extremes and Recurrence in Dynamical Systems. Wiley (2015)

  19. Mazzolena, M.: Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Master’s Thesis, Roma 2 (2007)

  20. Sarig O.: Subexponential decay of correlations. Invent. Math. 150, 629–653 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ruelle D.: Differentiation of SRB states. Comm. Math. Phys. 187, 227–241 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ruelle D.: General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 245, 220–224 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ruelle D.: Structure and f-dependence of the A.C.I.M. for a unimodal map f of Misiurewicz type. Comm. Math. Phys. 287, 1039–1070 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ruelle D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Thaler M.: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Israel J. Math. 37, 303–314 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thaler M.: The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures. Stud. Math. 143, 103–119 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Baladi.

Additional information

Communicated by C. Liverani

This work was started in 2014 during a visit of MT to DMA-ENS, continued during a visit of VB to St Andrews in 2015, and finished during a stay of VB in the Centre for Mathematical Sciences in Lund. We are grateful to these institutions for their hospitality, and we thank I. Melbourne for pointing out reference [Th2] and A. Korepanov for inciting us to sharpen our results. VB thanks Bruin for explanations on [BT] and T. Persson for a conversation on L q. She is much indebted to S. Gouëzel for pointing out Theorem 2.4.14 in [Goth], which allowed us to extend our results to \({\alpha \in [1/2,1)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baladi, V., Todd, M. Linear Response for Intermittent Maps. Commun. Math. Phys. 347, 857–874 (2016). https://doi.org/10.1007/s00220-016-2577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2577-z

Keywords

Navigation