Skip to main content
Log in

On Normal and Non-Normal Wave Statistics Implied by a Canonical–Microcanonical Gibbs Ensemble of the Truncated KdV System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The truncated Korteweg–De Vries (TKdV) system—a shallow-water wave model with Hamiltonian structure that exhibits weakly turbulent dynamics—has been found to accurately predict the anomalous wave statistics observed in recent laboratory experiments. Majda et al. (Proc Natl Acad Sci 116(10):3982–3987, 2019) developed a TKdV statistical mechanics framework based on a mixed Gibbs measure that is supported on a surface of fixed energy (microcanonical) and takes the usual canonical form in the Hamiltonian. This paper reports two rigorous results regarding the surface-displacement distributions implied by this ensemble, both in the limit of the cutoff wavenumber \(\Lambda \) growing large. First, we prove that if the inverse temperature vanishes, displacement statistics converge to Gaussian as \(\Lambda \rightarrow \infty \). Second, we prove that if nonlinearity is absent and the inverse-temperature satisfies a certain physically-motivated scaling law, then displacement statistics converge to Gaussian as \(\Lambda \rightarrow \infty \). When the scaling law is not satisfied, simple numerical examples demonstrate symmetric, yet highly non-Gaussian, displacement statistics to emerge in the linear system, illustrating that nonlinearity is not a strict requirement for non-normality in the fixed-energy ensemble. The new results, taken together, imply necessary conditions for the anomalous wave statistics observed in previous numerical studies. In particular, non-vanishing inverse temperature and either the presence of nonlinearity or the violation of the scaling law are required for displacement statistics to deviate from Gaussian. The proof of this second theorem involves the construction of an approximating measure, which we find also elucidates the peculiar spectral decay observed in numerical studies and may open the door for improved sampling algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abramov, R.V., Kovačič, G., Majda, A.J: Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation. Commun. Pure Appl. Math. 56(1):1–46, (2003)

  2. Afzal, M.S., Kumar, L.: Propagation of waves over a rugged topography. J. Ocean Eng. Sci. 7, 14 (2021)

    Google Scholar 

  3. Agafontsev, D.S., Zakharov, V.E.: Integrable turbulence and formation of rogue waves. Nonlinearity 28(8), 2791 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bajars, J., Frank, J.E., Leimkuhler, B.J.: Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations. Nonlinearity 26(7), 1945 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bolles, C.T., Speer, K., Moore, M.N.J.: Anomalous wave statistics induced by abrupt depth change. Phys. Rev. Fluids 4(1), 011801 (2019)

    ADS  Google Scholar 

  6. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)

    ADS  MATH  Google Scholar 

  7. Bourgain, J.: Global Solutions Of Nonlinear Schrödinger Equations, vol. 46. American Mathematical Soc. (1999)

  8. Chen, N., Majda, A.J., Thual, S.: Observations and mechanisms of a simple stochastic dynamical model capturing el niño diversity. J. Clim. 31(1), 449–471 (2018)

    ADS  Google Scholar 

  9. Chiu, S.-H., Moore, M.N.J., Quaife, B.: Viscous transport in eroding porous media. J. Fluid Mech. 893, A3 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Costa, A., Osborne, A.R., Resio, D.T., Alessio, S., Chrivì, E., Saggese, E., Bellomo, K., Long, C.E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113(10), 108501 (2014)

    ADS  Google Scholar 

  11. Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. Phys. Rev. X 9(4), 041057 (2019)

    Google Scholar 

  12. Dematteis, G., Grafke, T., Vanden-Eijnden, E.: Rogue waves and large deviations in deep sea. Proc. Natl. Acad. Sci. 115(5), 855–860 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1(11), 675–689 (2019)

    Google Scholar 

  14. Garrett, C., Gemmrich, J.: Rogue waves. Phys. Today 62(6), 62 (2009)

    Google Scholar 

  15. Hadjihosseini, A., Peinke, J., Hoffmann, N.P.: Stochastic analysis of ocean wave states with and without rogue waves. New J. Phys. 16(5), 053037 (2014)

    ADS  Google Scholar 

  16. Han, D., Wang, Q., Wang, X.: Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media. Physica D 414, 132687 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Haver, S.: A possible freak wave event measured at the Draupner Jacket January 1 1995. In: Rogue Waves, vol. 2004, pp. 1–8 (2004)

  18. Herterich, J.G., Dias, F.: Extreme long waves over a varying bathymetry. J. Fluid Mech. 878, 481–501 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, vol. 19. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Karmpadakis, I., Swan, C., Christou, M.: Laboratory investigation of crest height statistics in intermediate water depths. Proc. R. Soc. A 475(2229), 20190183 (2019)

    ADS  Google Scholar 

  21. Khazmutdinova, K., Nof, D., Tremaine, D., Ye, M., Moore, M.N.J.: A minimal model for predicting ventilation rates of subterranean caves. J. Cave Karst Stud. 81(4), 264–275 (2019)

    Google Scholar 

  22. Lawrence, C., Trulsen, K., Gramstad, O.: Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry. Phys. Fluids 33(4), 046601 (2021)

    ADS  Google Scholar 

  23. Lax, P. D: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)

  24. Lebowitz, J.L., Rose, H.A., Speer, E.R.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50(3), 657–687 (1988)

    ADS  MATH  Google Scholar 

  25. Lebowitz, J.L., Rose, H.A., Speer, E.R.: Statistical mechanics of the nonlinear schrödinger equation. II. mean field approximation. J. Stat. Phys. 54(1), 17–56 (1989)

  26. Li, Y., Draycott, S., Adcock, T.A.A., van den Bremer, T.S.: Surface wavepackets subject to an abrupt depth change. Part 2. experimental analysis. J. Fluid Mech. 915, A72 (2021)

  27. Li, Y., Draycott, S., Zheng, Y., Lin, Z., Adcock, T.A.A., Van Den Bremer, T.S.: Why rogue waves occur atop abrupt depth transitions. J. Fluid Mech. 919 (2021)

  28. Li, Y., Zheng, Y., Lin, Z., Adcock, T.A.A., van den Bremer, T.S.: Surface wavepackets subject to an abrupt depth change. part 1. second-order theory. J. Fluid Mech. 915, A71 (2021)

  29. Mac Huang, J., Moore, N.J.: Morphological attractors in natural convective dissolution. Phys. Rev. Lett. 128(2), 024501 (2022)

    ADS  MathSciNet  Google Scholar 

  30. Mac Huang, J., Zhong, J.-Q., Zhang, J., Mertz, L.: Stochastic dynamics of fluid–structure interaction in turbulent thermal convection. J. Fluid Mech. 854 (2018)

  31. Majda, A., Timofeyev, I.: Statistical mechanics for truncations of the Burgers-Hopf equation: a model for intrinsic stochastic behavior with scaling. Milan J. Math. 70(1), 39–96 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Majda, A., Wang, X.: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  33. Majda, A.J., Moore, M.N.J., Qi, D.: Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change. Proc. Natl. Acad. Sci. 116(10), 3982–3987 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Majda, A.J., Qi, D.: Statistical phase transitions and extreme events in shallow water waves with an abrupt depth change. J. Stat. Phys. 179, 1718 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Majda, A.J., Timofeyev, I.: Remarkable statistical behavior for truncated burgers-hopf dynamics. Proc. Natl. Acad. Sci. 97(23), 12413–12417 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  36. McCurdy, M., Moore, N., Wang, X.: Convection in a coupled free flow-porous media system. SIAM J. Appl. Math. 79(6), 2313–2339 (2019)

    MathSciNet  MATH  Google Scholar 

  37. McDonald, N.R.: Finger growth and selection in a poisson field. J. Stat. Phys. 178(3), 763–774 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Mendes, S., Scotti, A., Brunetti, M., Kasparian, J.: Non-homogeneous analysis of rogue wave probability evolution over a shoal. J. Fluid Mech. 939 (2022)

  39. Moore, N.J., Bolles, C.T., Majda, A.J., Qi, D.: Anomalous waves triggered by abrupt depth changes: laboratory experiments and truncated KdV statistical mechanics. J. Nonlinear Sci. 30(6), 3235–3263 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Ogrosky, H.R., Stechmann, S.N., Chen, N., Majda, A.J.: Singular spectrum analysis with conditional predictions for real-time state estimation and forecasting. Geophys. Res. Lett. 46(3), 1851–1860 (2019)

    ADS  Google Scholar 

  41. Owen, A.B.: Monte Carlo theory, methods and examples. Methods and Examples. Art Owen, Monte Carlo Theory (2013)

    Google Scholar 

  42. Pelinovsky, E., Sergeeva, A.: Numerical modeling of the kdv random wave field. Eur. J. Mech. B 25(4), 425–434 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Qi, D., Majda, A.J.: Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. 117, 52 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Qi, D., Vanden-Eijnden, E.: Anomalous statistics and large deviations of turbulent water waves past a step. AIP Adv. 12(2), 025016 (2022)

    ADS  Google Scholar 

  45. Randoux, S., Walczak, P., Onorato, M., Suret, P.: Intermittency in integrable turbulence. Phys. Rev. Lett. 113(11), 113902 (2014)

    ADS  Google Scholar 

  46. Rothman, D.H.: Thresholds of catastrophe in the earth system. Sci. Adv. 3(9), e1700906 (2017)

    ADS  Google Scholar 

  47. Rothman, D.H.: Characteristic disruptions of an excitable carbon cycle. Proc. Natl. Acad. Sci. 116(30), 14813–14822 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Skare, Ø., Bølviken, E., Holden, L.: Improved sampling-importance resampling and reduced bias importance sampling. Scand. J. Stat. 30(4), 719–737 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Stechmann, S.N., Hottovy, S.: Cloud regimes as phase transitions. Geophys. Res. Lett. 43(12), 6579–6587 (2016)

    ADS  Google Scholar 

  50. Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M.: Onorato, Miguel: wind generated rogue waves in an annular wave flume. Phys. Rev. Lett. 118(14), 144503 (2017)

    ADS  Google Scholar 

  51. Trulsen, K., Raustøl, A., Jorde, S., Rye, L.B.: Extreme wave statistics of long-crested irregular waves over a shoal. J. Fluid Mech. 882, R2 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Varadhan, S.R.S.: Probability Theory, Volume 7 of Courant Lecture Notes in Mathematics, vol. 1, p. 100. New York University Courant Institute of Mathematical Sciences, New York (2001)

  53. Viotti, C., Dias, F.: Extreme waves induced by strong depth transitions: fully nonlinear results. Phys. Fluids 26(5), 051705 (2014)

    ADS  MATH  Google Scholar 

  54. Whitham, G.B.: Linear and Nonlinear Waves, vol. 42. Wiley, New York (2011)

    MATH  Google Scholar 

  55. Zhang, J., Libchaber, A.: Periodic boundary motion in thermal turbulence. Phys. Rev. Lett. 84(19), 4361 (2000)

    ADS  Google Scholar 

  56. Zheng, Y., Lin, Z., Li, Y., Adcock, T.A.A., Li, Y., van den Bremer, T.S.: Fully nonlinear simulations of unidirectional extreme waves provoked by strong depth transitions: the effect of slope. Phys. Rev. Fluids 5(6), 064804 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

N.J. Moore would like to acknowledge support from the National Science Foundation, DMS-2012560, and from the Simons Foundation, Award 524259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Moore.

Additional information

Communicated by Mehran Kardar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Moore, N.J. On Normal and Non-Normal Wave Statistics Implied by a Canonical–Microcanonical Gibbs Ensemble of the Truncated KdV System. J Stat Phys 190, 4 (2023). https://doi.org/10.1007/s10955-022-02999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02999-z

Navigation