Skip to main content
Log in

Anomalous Waves Triggered by Abrupt Depth Changes: Laboratory Experiments and Truncated KdV Statistical Mechanics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Recent laboratory experiments of Bolles et al. (Phys Rev Fluids 4(1):011801, 2019) demonstrate that an abrupt change in bottom topography can trigger anomalous statistics in randomized surface waves. Motivated by these observations, Majda et al. (Proc Natl Acad Sci 116(10):3982–3987, 2019) developed a theoretical framework, based on deterministic and statistical analysis of the truncated Korteweg-de Vries (TKdV) system that successfully captures key qualitative features of the experiments including the robust emergence of anomalous statistics and heightened skewness in the outgoing wavefield. Here, we extend these parallel experimental and modeling efforts with several new findings that have resulted from a synergetic interaction between the two. By precisely relating model parameters to physical ones, we calibrate the model inverse temperature to the specific conditions present in the experiments, thereby permitting a quantitative comparison. We find theoretically predicted distributions of surface displacement to match the experimental measurements with surprising detail. Prompted by the presence of surface slope in the TKdV Hamiltonian, we present new experimental measurements on surface slope statistics and compare them to model predictions. Analysis of some deterministic trajectories of TKdV elucidates the experimental length and time scales required for the statistical transition to a skewed state. Finally, the theory predicts a peculiar relationship between the outgoing displacement skewness and the change in slope variance, specifically how their ratio depends on the wave amplitude and depth ratio. New experimental measurements provide convincing evidence for this prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramov, R.V., Kovačič, G., Majda, A.J.: Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation. Commun. Pure Appl. Math. 56(1), 1–46 (2003)

    MathSciNet  MATH  Google Scholar 

  • Bajars, J., Frank, J.E., Leimkuhler, B.J.: Weakly coupled heat bath models for Gibbs-like invariant states in nonlinear wave equations. Nonlinearity 26(7), 1945 (2013)

    MathSciNet  MATH  Google Scholar 

  • Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water part 1 theory. J. Fluid Mech. 27(03), 417–430 (1967)

    MATH  Google Scholar 

  • Blonigan, P.J., Farazmand, M., Sapsis, T.P.: Are extreme dissipation events predictable in turbulent fluid flows? Phys. Rev. Fluids 4(4), 044606 (2019)

    Google Scholar 

  • Bolles, C.T., Speer, K., Moore, M.N.J.: Anomalous wave statistics induced by abrupt depth change. Phys. Rev. Fluids 4(1), 011801 (2019)

    Google Scholar 

  • Camassa, R., McLaughlin, R.M., Moore, M.N.J., Yu, K.: Stratified flows with vertical layering of density: experimental and theoretical study of flow configurations and their stability. J. Fluid Mech. 690, 571–606 (2012)

    MATH  Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29(6), 2797–2843 (2019)

    MathSciNet  MATH  Google Scholar 

  • Chen, N., Majda, A.J.: Filtering nonlinear turbulent dynamical systems through conditional Gaussian statistics. Mon. Weather Rev. 144(12), 4885–4917 (2016)

    Google Scholar 

  • Clarkson, P.A., Dowie, E.: Rational solutions of the Boussines equation and applications to rogue waves. Trans. Math. Appl. 1(1), tnx003 (2017)

    MATH  Google Scholar 

  • Costa, A., Osborne, A.R., Resio, D.T., Alessio, S., Chrivì, E., Saggese, E., Bellomo, K., Long, C.E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113(10), 108501 (2014)

    Google Scholar 

  • Cousins, W., Sapsis, T.P.: Unsteady evolution of localized unidirectional deep-water wave groups. Phys. Rev. E 91(6), 063204 (2015)

    MathSciNet  Google Scholar 

  • Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantions: the universal route to rogue waves. Phys. Rev. X 9(4), 041057 (2019)

    Google Scholar 

  • Dematteis, G., Grafke, T., Vanden-Eijnden, E.: Rogue waves and large deviations in deep sea. Proc. Nat. Acad. Sci. 115(5), 855–860 (2018)

    MathSciNet  MATH  Google Scholar 

  • Farazmand, M., Sapsis, T.P.: Reduced-order prediction of rogue waves in two-dimensional deep-water waves. J. Comput. Phys. 340, 418–434 (2017)

    MathSciNet  MATH  Google Scholar 

  • Ganedi, L., Oza, A.U., Shelley, M., Ristroph, L.: Equilibrium shapes and their stability for liquid films in fast flows. Phys. Rev. Lett. 121(9), 094501 (2018)

    Google Scholar 

  • Garrett, C., Gemmrich, J.: Rogue waves. Phys. Today 62(6), 62 (2009)

    Google Scholar 

  • Gramstad, O., Zeng, H., Trulsen, K., Pedersen, G.K.: Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Phys. Fluids 25(12), 122103 (2013)

    MATH  Google Scholar 

  • Guth, S., Sapsis, T.P.: Machine learning predictors of extreme events occurring in complex dynamical systems. Entropy 21(10), 925 (2019)

    MathSciNet  Google Scholar 

  • Heller, E.J., Kaplan, L., Dahlen, A.: Refraction of a Gaussian seaway. J. Geophys. Res. Oceans 113(C9) (2008)

  • Herterich, J.G., Dias, F.: Extreme long waves over a varying bathymetry. J. Fluid Mech. 878, 481–501 (2019)

    MathSciNet  MATH  Google Scholar 

  • Holm, D.D.: A stochastic closure for wave-current interaction dynamics. J. Nonlinear Sci. 29(6), 2987–3031 (2019)

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, vol. 19. Cambridge University Press (1997)

  • Karmpadakis, I., Swan, C., Christou, M.: Laboratory investigation of crest height statistics in intermediate water depths. Proc. R. Soc. A 475(2229), 20190183 (2019)

    Google Scholar 

  • Kharif, C., Giovanangeli, J.-P., Touboul, J., Grare, L., Pelinovsky, E.: Influence of wind on extreme wave events: experimental and numerical approaches. J. Fluid Mech. 594, 209–247 (2008)

    MATH  Google Scholar 

  • Kleeman, R., Turkington, B.E.: A nonequilibrium statistical model of spectrally truncated Burgers-Hopf dynamics. Commun. Pure Appl. Math. 67(12), 1905–1946 (2014)

    MathSciNet  MATH  Google Scholar 

  • Lax, P.D.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)

    MathSciNet  MATH  Google Scholar 

  • Macêdo, A.M.S., González, I.R.R., Salazar, D.S.P., Vasconcelos, G.L.: Universality classes of fluctuation dynamics in hierarchical complex systems. Phys. Rev. E 95(3), 032315 (2017)

    Google Scholar 

  • Majda, A., Qi, D.: Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems. SIAM Rev. 60(3), 491–549 (2018)

    MathSciNet  MATH  Google Scholar 

  • Majda, A.J.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer (2016)

  • Majda, A.J., Moore, M.N.J., Qi, D.: Statistical dynamical model to predict extreme events and anomalous features in shallow water waves with abrupt depth change. Proc. Natl. Acad. Sci. 116(10), 3982–3987 (2019)

    MathSciNet  MATH  Google Scholar 

  • Majda, A.J., Qi, D.: Statistical phase transitions and extreme events in shallow water waves with an abrupt depth change. J. Stat. Phys. pp. 1–24 (2019)

  • McLachlan, R.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66(1), 465–492 (1993)

    MathSciNet  MATH  Google Scholar 

  • Müller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18(3), 66 (2005)

    Google Scholar 

  • Onorato, M., Proment, D., El, G., Randoux, S., Suret, P.: On the origin of heavy-tail statistics in equations of the nonlinear Schrödinger type. Phys. Lett. A 380(39), 3173–3177 (2016)

    MathSciNet  Google Scholar 

  • Onorato, M., Proment, D., Toffoli, A.: Triggering rogue waves in opposing currents. Phys. Rev. Lett. 107(18), 184502 (2011)

    Google Scholar 

  • Onorato, M., Suret, P.: Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models. Nat. Hazards 84(2), 541–548 (2016)

    Google Scholar 

  • Pelinovsky, E., Talipova, T., Kharif, C.: Nonlinear-dispersive mechanism of the freak wave formation in shallow water. Physica D 147(1–2), 83–94 (2000)

    MATH  Google Scholar 

  • Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. ANZIAM J. 25(1), 16–43 (1983)

    MATH  Google Scholar 

  • Qi, D., Majda, A.J.: Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. 117(1), 52–59 (2020)

    Google Scholar 

  • Randoux, S., Walczak, P., Onorato, M., Suret, P.: Intermittency in integrable turbulence. Phys. Rev. Lett. 113(11), 113902 (2014)

    Google Scholar 

  • Randoux, S., Walczak, P., Onorato, M., Suret, P.: Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency. Physica D 333, 323–335 (2016)

    MathSciNet  Google Scholar 

  • Rey, V., Belzons, M., Guazzelli, E.: Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech. 235, 453–479 (1992)

    MathSciNet  Google Scholar 

  • Ristroph, L., Moore, M.N.J., Childress, S., Shelley, M.J., Zhang, J.: Sculpting of an erodible body in flowing water. Proc. Natl. Acad. Sci. 109(48), 19606–19609 (2012)

    Google Scholar 

  • Sapsis, T.P., Majda, A.J.: Blending modified Gaussian closure and non-Gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23(6), 1039–1071 (2013a)

    MathSciNet  MATH  Google Scholar 

  • Sapsis, T.P., Majda, A.J.: Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems. Proc. Nat. Acad. Sci. 110(34), 13705–13710 (2013b)

    MathSciNet  MATH  Google Scholar 

  • Sapsis, T.P., Majda, A.J.: A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems. Physica D 252, 34–45 (2013c)

    MathSciNet  MATH  Google Scholar 

  • Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M., Onorato, M.: Wind generated rogue waves in an annular wave flume. Phys. Rev. Lett. 118(14), 144503 (2017)

    Google Scholar 

  • Trulsen, K., Raustøl, A., Jorde, S., Rye, L.: Extreme wave statistics of long-crested irregular waves over a shoal. J. Fluid Mech. 882 (2020)

  • Viotti, C., Dias, F.: Extreme waves induced by strong depth transitions: Fully nonlinear results. Phys. Fluids 26(5), 051705 (2014)

    MATH  Google Scholar 

  • Viotti, C., Dutykh, D., Dudley, J.M., Dias, F.: Emergence of coherent wave groups in deep-water random sea. Phys. Rev. E 87(6), 063001 (2013)

    Google Scholar 

  • White, B.S., Fornberg, B.: On the chance of freak waves at sea. J. Fluid Mech. 355, 113–138 (1998)

    MathSciNet  MATH  Google Scholar 

  • Whitham, G.B.: Linear and nonlinear waves, vol. 42. John Wiley & Sons (2011)

  • Ying, L.H., Zhuang, Z., Heller, E.J., Kaplan, L.: Linear and nonlinear rogue wave statistics in the presence of random currents. Nonlinearity 24(11), R67 (2011)

    MathSciNet  MATH  Google Scholar 

  • Zakharov, V.E.: Turbulence in integrable systems. Stud. Appl. Math. 122(3), 219–234 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C.T.B. acknowledges support from the IDEA grant at Florida State University, as well as from the Geophysical Fluid Dynamics Institute. M.N.J.M. acknowledges support from the Simons Foundation, Award 524259. This research of A.J.M. is partially supported by the Office of Naval Research ONR N00014-19-1-2286. D.Q. is supported as a postdoctoral fellow on the grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Moore.

Additional information

Communicated by Leslie Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, N.J., Bolles, C.T., Majda, A.J. et al. Anomalous Waves Triggered by Abrupt Depth Changes: Laboratory Experiments and Truncated KdV Statistical Mechanics. J Nonlinear Sci 30, 3235–3263 (2020). https://doi.org/10.1007/s00332-020-09649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09649-2

Navigation