Skip to main content
Log in

Surveying Structural Complexity in Quantum Many-Body Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement alone. Using tools from complexity science, we characterise such structure. We investigate the structural complexities that can be found within the patterns that manifest from the observational data of these systems. In particular, using two prototypical quantum many-body systems as test cases—the one-dimensional quantum Ising and Bose–Hubbard models—we explore how different information-theoretic measures of complexity are able to identify different features of such patterns. This work furthers the understanding of fully-quantum notions of structure and complexity in quantum systems and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bloch, I., Dalibard, J., Nascimbene, S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  3. Lewenstein, M., Sanpera, A., Ahufinger, V.: Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  4. Johnson, T.H., Clark, S.R., Jaksch, D.: What is a quantum simulator? EPJ Quant. Technol. 1, 1 (2014)

    Google Scholar 

  5. Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  6. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  7. Jaksch, D., Zoller, P.: Creation of effective magnetic fields in optical lattices: The hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  8. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  9. Baumann, K., Guerlin, C., Brennecke, F., Esslinger, T.: Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  10. Ritsch, H., Domokos, P., Brennecke, F., Esslinger, T.: Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553 (2013)

    Article  ADS  Google Scholar 

  11. Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I.: Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  12. Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C., Ketterle, W.: Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  13. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  16. Verstraete, F., Cirac, J.I.: Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  17. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Valdez, M.A., Jaschke, D., Vargas, D.L., Carr, L.D.: Quantifying complexity in quantum phase transitions via mutual information complex networks. Phys. Rev. Lett. 119, 225301 (2017)

    Article  ADS  Google Scholar 

  20. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Lett. 63, 105 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: Pattern and prediction, structure and simplicity. J. Stat. Phys. 104, 817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8, 17 (2012)

    Article  Google Scholar 

  23. Gu, M., Wiesner, K., Rieper, E., Vedral, V.: Quantum mechanics can reduce the complexity of classical models. Nat. Commun. 3, 762 (2012)

    Article  ADS  Google Scholar 

  24. Mahoney, J.R., Aghamohammadi, C., Crutchfield, J.P.: Occam’s quantum strop: Synchronizing and compressing classical cryptic processes via a quantum channel. Sci. Rep. 6, 20495 (2016)

    Article  ADS  Google Scholar 

  25. Palsson, M.S., Gu, M., Ho, J., Wiseman, H.M., Pryde, G.J.: Experimentally modeling stochastic processes with less memory by the use of a quantum processor. Sci. Adv. 3, e1601302 (2017)

    Article  ADS  Google Scholar 

  26. Aghamohammadi, C., Loomis, S.P., Mahoney, J.R., Crutchfield, J.P.: Extreme quantum memory advantage for rare-event sampling. Phys. Rev. X 8, 011025 (2018)

    Google Scholar 

  27. Binder, F.C., Thompson, J., Gu, M.: Practical unitary simulator for non-Markovian complex processes. Phys. Rev. Lett. 120, 240502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Elliott, T.J., Gu, M.: Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes. NPJ Quant. Inf. 4, 18 (2018)

    Article  ADS  Google Scholar 

  29. Elliott, T.J., Garner, A.J.P., Gu, M.: Memory-efficient tracking of complex temporal and symbolic dynamics with quantum simulators. New J. Phys. 21, 013021 (2019)

    Article  ADS  Google Scholar 

  30. Liu, Q., Elliott, T.J., Binder, F.C., Di Franco, C., Gu, M.: Optimal stochastic modeling with unitary quantum dynamics. Phys. Rev. A 99, 062110 (2019)

    Article  ADS  Google Scholar 

  31. Suen, W.Y., Thompson, J., Garner, A.J.P., Vedral, V., Gu, M.: The classical-quantum divergence of complexity in modelling spin chains. Quantum 1, 25 (2017)

    Article  Google Scholar 

  32. Aghamohammadi, C., Mahoney, J.R., Crutchfield, J.P.: The ambiguity of simplicity in quantum and classical simulation. Phys. Lett. A 381, 1223 (2017)

    Article  ADS  MATH  Google Scholar 

  33. Jouneghani, F.G., Gu, M., Ho, J., Thompson, J., Suen, W.Y., Wiseman, H.M., Pryde, G.J.: Observing the ambiguity of simplicity via quantum simulations of an ising spin chain. arXiv:1711.03661 (2017)

  34. Loomis, S.P., Crutchfield, J.P.: Strong and weak optimizations in classical and quantum models of stochastic processes. J. Stat. Phys. 176, 1317 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Garner, A.J., Liu, Q., Thompson, J., Vedral, V., et al.: Provably unbounded memory advantage in stochastic simulation using quantum mechanics. New J. Phys. 19, 103009 (2017)

    Article  ADS  Google Scholar 

  36. Aghamohammadi, C., Mahoney, J.R., Crutchfield, J.P.: Extreme quantum advantage when simulating classical systems with long-range interaction. Sci. Rep. 7, 6735 (2017)

    Article  ADS  Google Scholar 

  37. Thompson, J., Garner, A.J.P., Mahoney, J.R., Crutchfield, J.P., Vedral, V., Gu, M.: Causal asymmetry in a quantum world. Phys. Rev. X 8, 031013 (2018)

    Google Scholar 

  38. Elliott, T.J., Yang, C., Binder, F.C., Garner, A.J.P., Thompson, J., Gu, M.: Extreme dimensionality reduction with quantum modeling. Phys. Rev. Lett. 125, 260501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Elliott, T.J., Gu, M., Garner, A.J.P., Thompson, J.: Quantum adaptive agents with efficient long-term memories. Phys. Rev. X 12, 011007 (2022)

    Google Scholar 

  40. Khintchine, A.: Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  41. Crutchfield, J.P., Feldman, D.P.: Statistical complexity of simple 1d spin systems. Phys. Rev. E 55, 1239R (1997)

    Article  ADS  Google Scholar 

  42. Palmer, A.J., Fairall, C.W., Brewer, W.A.: Complexity in the atmosphere. IEEE Trans. Geosci. Remote Sens. 38, 2056 (2000)

    Article  ADS  Google Scholar 

  43. Varn, D.P., Canright, G.S., Crutchfield, J.P.: Discovering planar disorder in close-packed structures from X-ray diffraction: beyond the fault model. Phys. Rev. B 66, 174110 (2002)

    Article  ADS  Google Scholar 

  44. Clarke, R.W., Freeman, M.P., Watkins, N.W.: Application of computational mechanics to the analysis of natural data: an example in geomagnetism. Phys. Rev. E 67, 016203 (2003)

    Article  ADS  Google Scholar 

  45. Park, J.B., Lee, J.W., Yang, J.-S., Jo, H.-H., Moon, H.-T.: Complexity analysis of the stock market. Physica A 379, 179 (2007)

    Article  ADS  Google Scholar 

  46. Li, C.-B., Yang, H., Komatsuzaki, T.: Multiscale complex network of protein conformational fluctuations in single-molecule time series. Proc. Natl. Acad. Sci. 105, 536 (2008)

    Article  ADS  Google Scholar 

  47. Haslinger, R., Klinkner, K.L., Shalizi, C.R.: The computational structure of spike trains. Neural Comput. 22, 121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kelly, D., Dillingham, M., Hudson, A., Wiesner, K.: A new method for inferring hidden Markov models from noisy time sequences. PLoS ONE 7, e29703 (2012)

    Article  ADS  Google Scholar 

  49. Mu noz, R.N., Leung, A., Zecevik, A., Pollock, F.A., Cohen, D., van Swinderen, B., Tsuchiya, N., Modi, K.: General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in drosophila. Phys. Rev. Res. 2, 023219 (2020)

    Article  Google Scholar 

  50. Shaw, R.: The dripping faucet as a model chaotic system. Aerial Press, London (1984)

    MATH  Google Scholar 

  51. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning. Neural Comput. 13, 2409 (2001)

    Article  MATH  Google Scholar 

  52. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  53. Tan, R., Terno, D.R., Thompson, J., Vedral, V., Gu, M.: Towards quantifying complexity with quantum mechanics. Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  54. Ho, M., Gu, M., Elliott, T.J.: Robust inference of memory structure for efficient quantum modeling of stochastic processes. Phys. Rev. A 101, 032327 (2020)

    Article  ADS  Google Scholar 

  55. Ho, M., Pradana, A., Elliott, T.J., Chew, L.Y., Gu, M.: Quantum-inspired identification of complex cellular automata. arXiv:2103.14053 (2021)

  56. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  57. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  58. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  59. Daley, A.J., Pichler, H., Schachenmayer, J., Zoller, P.: Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Phys. Rev. Lett. 109, 020505 (2012)

    Article  ADS  Google Scholar 

  60. Abanin, D.A., Demler, E.: Measuring entanglement entropy of a generic many-body system with a quantum switch. Phys. Rev. Lett. 109, 020504 (2012)

    Article  ADS  Google Scholar 

  61. Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77 (2015)

    Article  ADS  Google Scholar 

  62. Elliott, T.J., Kozlowski, W., Caballero-Benitez, S.F., Mekhov, I.B.: Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement. Phys. Rev. Lett. 114, 113604 (2015)

    Article  ADS  Google Scholar 

  63. Mattis, D.C.: The Theory of Magnetism Made Simple: An Introduction to Physical Concepts and to Some Useful Mathematical Methods. World Scientific, Singapore (2006)

    Book  Google Scholar 

  64. Pino, M., Prior, J., Somoza, A.M., Jaksch, D., Clark, S.R.: Reentrance and entanglement in the one-dimensional Bose–Hubbard model. Phys. Rev. A 86, 023631 (2012)

    Article  ADS  Google Scholar 

  65. Barnett, N., Crutchfield, J.P.: Computational mechanics of input-output processes: structured transformations and \(\text{ the }\backslash \) epsilon-transducer. J. Stat. Phys. 161, 404 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Thompson, J., Garner, A.J.P., Vedral, V., Gu, M.: Using quantum theory to simplify input-output processes. NPJ Quant. Inf. 3, 6 (2017)

    Article  ADS  Google Scholar 

  67. Al-Assam, S., Clark, S.R., Jaksch, D.: The tensor network theory library. J. Stat. Mech. 2017, 093102 (2017)

    Article  MATH  Google Scholar 

  68. Pirvu, B., Murg, V., Cirac, J.I., Verstraete, F.: Matrix product operator representations. New J. Phys. 12, 025012 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  70. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  71. White, S.R., Huse, D.A.: Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic s= 1 Heisenberg chain. Phys. Rev. B 48, 3844 (1993)

    Article  ADS  Google Scholar 

  72. Lanczos, C.: An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators. United States Government Press Office, Los Angeles (1950)

    Book  MATH  Google Scholar 

  73. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. De Chiara, G., Rizzi, M., Rossini, D., Montangero, S.: Density matrix renormalization group for dummies. J. Comput. Theor. Nanosci. 5, 1277 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Felix Binder, Yang Chengran, Jirawat Tangpanitanon, and Benjamin Yadin for enlightening discussion, and the University of Oxford Advanced Research Computing department for providing us with access to their platform to run our numerical simulations. We are also grateful to Sarah Al-Assam, Stephen Clark, and Dieter Jaksch for their permission to use their tensor network library [67]. This work was funded by grant FQXi-RFP-1809 from the Foundational Questions Institute and Fetzer Franklin Fund (a donor advised fund of Silicon Valley Community Foundation), the Singapore Quantum Engineering Program QEP-SF3, the Singapore National Research Foundation Fellowship NRF-NRFF2016-02, the Imperial College Borland Fellowship in Mathematics, the Lee Kuan Yew Endowment Fund (Postdoctoral Fellowship), and the Singapore Ministry of Education Tier 1 grant RG162/19. M.G thanks the FQXi-funded workshop ‘Workshop on Agency at the Interface of Quantum and Complexity Science’ for catalyzing the research. T.J.E. thanks the Centre for Quantum Technologies for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whei Yeap Suen.

Additional information

Communicated by Chris Jarzynski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Appendix

Technical Appendix

Tensor Network Theory (TNT) [67] is a set of powerful and efficient numerical methods for classically simulating quantum many-body systems. In this Appendix, we briefly review matrix product states (MPS), matrix product operators (MPO), and the density matrix renormalisation group (DMRG) in the context of our work. MPS and MPO provide efficient descriptions of states and operators of quantum many-body systems respectively, while DMRG is an iterative procedure that variationally minimises the energy of Hamiltonians to obtain the ground states of quantum many-body systems.

MPS [18] are widely used as efficient representations of low energy states of one-dimensional quantum systems. In a quantum many-body chain, each lattice site is represented by a tensor, and the tensors are connected to their neighbours. Consider a quantum many-body chain of size N in a quantum state

$$\begin{aligned} \left| \psi \right\rangle&= \sum _{i_1 i_2 \dots i_N}c_{i_1i_2 \dots i_N} \left| i_1 \right\rangle \left| i_2 \right\rangle \cdots \left| i_N \right\rangle \end{aligned}$$
(14)

where \(\{ \left| i_j \right\rangle \}\) are the local orthonormal basis states. We can perform repeated Schmidt decompositions [52] at each site, splitting the tensor \(c_{i_1i_2 \dots i_N}\) into local tensors \(\Gamma ^{[j]}\), and Schmidt coefficients \(\lambda ^{[j]}\) that quantify the entanglement across the split, which gives us the canonical form of the MPS representation of the state:

$$\begin{aligned} \left| \psi \right\rangle&=\sum _{\{ i \},\{ \alpha \}}\!\!\left( \Gamma ^{[1]i_1}_{\alpha _1} \lambda ^{[1]}_{\alpha _1} \Gamma ^{[2]i_2}_{\alpha _1 \alpha _2} \lambda ^{[2]}_{\alpha _2}\ldots \lambda ^{[N-1]}_{\alpha _{N-1}}\Gamma ^{[N]i_N}_{\alpha _{N-1}}\right) \left| i_1 \right\rangle \left| i_2 \right\rangle \ldots \left| i_N \right\rangle , \end{aligned}$$
(15)

where \(\alpha _j\) takes positive integer values up to the rank of \(\Gamma ^{[j]}\). By contracting the Schmidt coefficient tensors \(\lambda ^{[j]}\) into the local tensors \(\Gamma ^{[j]}\), we obtain a more generic form:

$$\begin{aligned} \left| \psi \right\rangle&= \sum _{i_1 i_2 \dots i_N} A^{x_1}A^{x_2}\cdots A^{x_N} \left| i_1 \right\rangle \left| i_2 \right\rangle \cdots \left| i_N \right\rangle , \end{aligned}$$
(16)

where \(A^{x_j}\) is a matrix with the same dimension as the local basis states.

In a similar fashion, a quantum operator can be written in the form of MPO [68]:

$$\begin{aligned} \mathcal {H}&= \sum _{i,k} H^{i_1,k_1}H^{i_2,k_2} \cdots H^{i_N,k_N} |i_1 i_2\cdots i_N\left\rangle \right\langle k_1 k_2 \cdots k_N |, \end{aligned}$$
(17)

where \(H^{i_j,k_j}\) is a matrix with the dimension of the local basis state. With quantum states and Hamiltonians represented in MPS and MPO forms respectively, ground states \(\left| \psi _g \right\rangle \) may then be obtained by minimising \(\left\langle \psi \right| \mathcal {H}\left| \psi \right\rangle \) across all states using the DMRG algorithm.

The DMRG algorithm [69, 70] is an iterative, variational method that truncates the degrees of freedom of the system, retaining only the most significant features required to accurately describe the physics of a target state. The algorithm achieves remarkable precision in describing one-dimensional quantum many-body systems [71].

In the DMRG algorithm, the elementary unit is a site, described by the state \(d_i\) where \(i=1,\dots , D\) is the label of the states accessible to a given site. A block \(B(L,v_L)\) consists of L sites, and has total dimension \(v_L\); \(H_B\) is the Hamiltonian of the block, containing only terms that involve the sites inside the block. Whenever a block is enlarged, a site is added to the block, forming an enlarged block \(B^e\) with a Hilbert space dimension that is the product of the Hilbert space of \(B(L,v_L)\) and a site, i.e. \(v_L \times D\). An important step in the algorithm is the formation of superblock Hamiltonians, consisting of two enlarged blocks connected to each other. The superblock ground state is calculated using Lanczos [72] or Davidson [73] methods. The ground state is then truncated by discarding the least-probable eigenstates.

The algorithm itself consist of two parts: the warm-up cycle, and finite-system algorithm. The warm-up cycle is designed to create a system block of the desired length of at most dimension \(\chi \), before the finite-system algorithm is applied to compute the ground state. Starting from a block B(1, D), each step of the warm-up cycle is carried out as follows [74]:

  1. 1.

    Start from a left block \(B(L,v_L)\), and enlarge the block by adding a single site.

  2. 2.

    Form a superblock by adding a reflected copy of the enlarged block to its right.

  3. 3.

    Obtain the ground state of the superblock, and the \(v_{l+1}=\min (v_l D,\chi )\) eigenstates of the reduced density matrix of the left enlarged block with largest eigenvalues.

  4. 4.

    The truncated left enlarged block is used for the next iteration.

  5. 5.

    Renormalise all operators to obtain block \(B(L+1,v_{L+1})\).

These steps are repeated until the desired length \(L_{\mathrm {max}}\) is reached. Once the infinite-system algorithm reaches the desired length, the system consist of two blocks of \(B(L_{\text {max}}/2 - 1,\chi )\) and two free sites. The subsequent step is called the “sweep procedure", the goal of which is to enhance the convergence of the target state. The sweep procedure consists of enlarging the left block with one site and reducing the right block correspondingly to keep the length fixed. While the left block is constructed by the usual enlarging steps, the right block is recalled from memory, as it has been built in the infinite-system algorithm and saved. This procedure is repeated until the left block reaches the length \(L_{\text {max}}-4\). At this point the right block B(1, D) with one site is constructed from scratch and the left block \(B(L_{\text {max}},\chi )\) is obtained through renormalisation. The sweep procedure is then repeated from right to left, and at each iteration, the renormalised block has to be stored in memory. The procedure is stopped when the system energy converges.

In this manuscript, we use the implementations of these algorithms as described in [67], and the ground states are computed with \(\chi =150\) for the one-dimensional quantum Ising chain, and \(\chi =80\) for the one-dimensional Bose–Hubbard chain. The resulting ground states are accurate up to \(\mathcal {O}(10^{-14})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suen, W.Y., Elliott, T.J., Thompson, J. et al. Surveying Structural Complexity in Quantum Many-Body Systems. J Stat Phys 187, 4 (2022). https://doi.org/10.1007/s10955-022-02895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02895-6

Keywords

Navigation