Skip to main content
Log in

Unified Framework for Generalized Statistics: Canonical Partition Function, Maximum Occupation Number, and Permutation Phase of Wave Function

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Over the past decades, many kinds of generalized statistics are proposed through two approaches: (1) generalizing the permutation symmetry of the wave function and (2) generalizing the maximum occupation of the quantum state. Nevertheless, the connection between these two approaches is obscure. In this paper, we suggest a unified framework to describe various kinds of generalized statistics by using the representation theory of the permutation group and the unitary group. With this approach, we reveal the connection between the permutation phase and the maximum occupation number, through constructing a method to obtain the permutation phase and the maximum occupation number from the canonical partition function. We show that only bosonic and fermionic particles are completely indistinguishable under permutations. Particles obeying generalized statistics are not completely indistinguishable and thus are not quantum particles. Besides, we also give the following results: (1) providing a general formula of canonical partition functions of ideal N-particle gases who obey various kinds of generalized statistics, (2) revealing that the maximum occupation number is not sufficient to distinguish different kinds of generalized statistics, (3) specifying the permutation phases of wave functions for generalized statistics, and (4) proposing three new kinds of generalized statistics which seem to be the missing pieces in the puzzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reichl, L.: A Modern Course in Statistical Physics. Wiley, New York (2009)

    MATH  Google Scholar 

  2. Pathria, R.: Statistical Mechanics. Elsevier Science, Amsterdam (2011)

    MATH  Google Scholar 

  3. Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Il Nuovo Cimento B (1971–1996) 37(1), 1–23 (1977)

    Article  ADS  Google Scholar 

  4. Khare, A.: Fractional Statistics and Quantum Theory. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  5. Haldane, F.D.M.: Fractional statistics in arbitrary dimensions: a generalization of the Pauli principle. Phys. Rev. Lett. 67(8), 937 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dai, W.-S., Xie, M.: Intermediate-statistics spin waves. J. Stat. Mech. 2009(04), P04021 (2009)

    Article  Google Scholar 

  7. Green, H.S.: A generalized method of field quantization. Phys. Rev. 90(2), 270 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ohnuki, Y., Kamefuchi, S.: Quantum Field Theory and Parastatistics. Springer, New York (2021)

    MATH  Google Scholar 

  9. Tichy, M.C., Mølmer, K.: Extending exchange symmetry beyond bosons and fermions. Phys. Rev. A 96(2), 022119 (2017)

    Article  ADS  Google Scholar 

  10. Cattani, M., Fernandes, N.C.: General statistics, second quantization and quarks. Il Nuovo Cimento A (1965–1970) 79(1), 107 (1984)

    Article  Google Scholar 

  11. Gentilej, G.: Itosservazioni sopra le statistiche intermedie. Il Nuovo Cimento (1924–1942) 17, 493–497 (1940)

    Article  ADS  Google Scholar 

  12. Dai, W.-S., Xie, M.: Gentile statistics with a large maximum occupation number. Ann. Phys. 309(2), 295–305 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dai, W.-S., Xie, M.: Calculating statistical distributions from operator relations: the statistical distributions of various intermediate statistics. Ann. Phys. 332, 166–179 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nelson, C.A.: Generalized ray spaces for paraparticles. arXiv preprint arXiv:1912.09242 (2019)

  15. Dai, W.-S., Xie, M.: A representation of angular momentum (su (2)) algebra. Physica A 331(3–4), 497–504 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shen, Y., Dai, W.-S., Xie, M.: Intermediate-statistics quantum bracket, coherent state, oscillator, and representation of angular momentum [su (2)] algebra. Phys. Rev. A 75(4), 042111 (2007)

    Article  ADS  Google Scholar 

  17. Cattani, M., Bassalo, J.M.F.: Intermediate statistics, parastatistics, fractionary statistics and gentileonic statistics, arXiv preprint arXiv:0903.4773 (2009)

  18. Katsura, S., Kaminishi, K., Inawashiro, S.: Intermediate statistics. J. Math. Phys. 11(9), 2691–2697 (1970)

    Article  ADS  MATH  Google Scholar 

  19. Okayama, T.: Generalization of statistics. Prog. Theor. Phys. 7, 517–534 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shen, Y., Ai, Q., Long, G.L.: The relation between properties of gentile statistics and fractional statistics of anyon. Physica A 389(8), 1565–1570 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wu, Y.-S.: Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett. 73(7), 922 (1994)

    Article  ADS  Google Scholar 

  22. Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups, vol. 357. American Mathematical Society, Providence (1977)

    Google Scholar 

  23. Meijer, R.: Schur-weyl duality, B.S. thesis (2017)

  24. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  25. Zhou, C.-C., Dai, W.-S.: Calculating eigenvalues of many-body systems from partition functions. J. Stat. Mech. 2018(8), 083103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, C.-C., Dai, W.-S.: Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases. J. Stat. Mech. 2018(2), 023105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vo-Dai, T.: First and Second Quantization Theories of Parastatistics, PhD thesis (1972)

  28. Chaturvedi, S.: Canonical partition functions for parastatistical systems of any order. Phys. Rev. E 54(2), 1378 (1996)

    Article  ADS  Google Scholar 

  29. Dao, Q.: Schur-weyl duality. A lecture note in Columbia University 2018. http://www.math.columbia.edu/~ums/Finite%20Group%20Rep%20Theory7.pdf

  30. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  31. Narayanan, H.: On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients. J. Algebraic Comb. 24(3), 347–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chaturvedi, S., Srinivasan, V.: Grand Canonical Partition Functions for Multi Level Para Fermi Systems of Any Order, arXiv preprint hep-th/9608150 (1996)

  33. Iachello, F.: Lie Algebras and Applications, vol. 12. Springer, Berlin (2006)

    MATH  Google Scholar 

  34. Maslov, V.P.: The relationship between the Fermi–Dirac distribution and statistical distributions in languages. Math. Notes 101(3–4), 645–659 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Goulden, I., Jackson, D.: Immanants, Schur functions, and the Macmahon master theorem. Proc. Am. Math. Soc. 115(3), 605–612 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, C.-C., Dai, W.-S.: A statistical mechanical approach to restricted integer partition functions. J. Stat. Mech. 2018(5), 053111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  38. Tsallis, C., Baldovin, F., Cerbino, R., Pierobon, P.: Introduction to Nonextensive Statistical Mechanics and Thermodynamics, arXiv preprint cond-mat/0309093 (2003)

  39. Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)

    Article  ADS  Google Scholar 

  40. Toral, R.: On the nonextensivity of the long range xy model. J. Stat. Phys. 114(5), 1393–1398 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hansen, F.: Golden-Thompson’s inequality for deformed exponentials. J. Stat. Phys. 159(6), 1300–1305 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Jizba, P., Korbel, J.: On q-non-extensive statistics with non-Tsallisian entropy. Physica A 444, 808–827 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ruseckas, J.: Canonical ensemble in non-extensive statistical mechanics, q> 1. Physica A 458, 210–218 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Koutalonis, I., Vallianatos, F.: Evidence of non-extensivity in earth’s ambient noise. Pure Appl. Geophys. 174(12), 4369–4378 (2017)

    Article  ADS  Google Scholar 

  45. Balogh, S.G., Palla, G., Pollner, P., Czégel, D.: Generalized entropies, density of states, and non-extensivity. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  46. Vilenkin, N.J., Klimyk, A.: Representation of Lie Groups and Special Functions: Recent Advances. Springer Science & Business Media, Berlin (2013)

  47. Andrews, G.E.: The Theory of Partitions, vol. 2. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

We are very indebted to Dr G. Zeitrauman for his encouragement. This work is supported in part by NSF of China under Grant No. 62106033, No. 11575125, and No. 11675119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chun Zhou.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, CC., Chen, YZ. & Dai, WS. Unified Framework for Generalized Statistics: Canonical Partition Function, Maximum Occupation Number, and Permutation Phase of Wave Function. J Stat Phys 186, 19 (2022). https://doi.org/10.1007/s10955-021-02865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02865-4

Navigation