Skip to main content
Log in

Slow Propagation in Some Disordered Quantum Spin Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of transmission time to study the dynamics of disordered quantum spin chains and prove results relating its behavior to many-body localization properties. We also study two versions of the so-called Local Integrals of Motion (LIOM) representation of spin chain Hamiltonians and their relation to dynamical many-body localization. We prove that uniform-in-time dynamical localization expressed by a zero-velocity Lieb–Robinson bound implies the existence of a LIOM representation of the dynamics as well as a weak converse of this statement. We also prove that for a class of spin chains satisfying a form of exponential dynamical localization, sparse perturbations result in a dynamics in which transmission times diverge at least as a power law of distance, with a power for which we provide lower bound that diverges with increasing sparseness of the perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After this work appeared on the arXiv, similar perturbations were considered by De Roeck, Huveneers, and Olla, who proved subdiffusive dynamics in classical Hamiltonian chains [16].

References

  1. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Localization properties of the disordered xy spin chain. A review of mathematical results with an eye toward many-body localization. Ann. Phys. (Berlin) 529, 1600280 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman, M., Warzel, S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290, 903–934 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aizenman, M., Warzel, S.: Random operators. In: Disorder Effects on Quantum Spectra and Dynamics. Graduate Studies in Mathematics, vol. 168. Amer Math Soc, Providence (2015)

  5. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  6. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)

    Article  ADS  Google Scholar 

  7. Beaud, V., Warzel, S.: Low-energy Fock-space localization for attractive hard-core particles in disorder. Ann. H. Poincaré 18, 3143–3166 (2017)

    Article  MathSciNet  Google Scholar 

  8. Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J. Math. Phys. 59, 012109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. Braun, P., Waltner, D., Akila, M., Gutkin, B., Guhr, T.: Transition from quantum chaos to localization in spin chains, arXiv: 1902.06265 (2019)

  10. Chandran, A., Kim, I.H., Vidal, G., Abanin, D.A.: Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B 91, 085425 (2015)

    Article  ADS  Google Scholar 

  11. Chapman, J., Stolz, G.: Localization for random block operators related to the XY spin chain. Ann. H. Poincaré 16, 405–435 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chen, C.-F., Lucas, A.: Finite speed of quantum scrambling with long range interactions. Phys. Rev. Lett. 123, 250605 (2019)

    Article  ADS  Google Scholar 

  13. Chulaevsky, V., Suhov, Y.: Multi-particle Anderson localisation: induction on the number of particles. Math. Phys. Anal. Geom. 12, 117–139 (2009)

    Article  MathSciNet  Google Scholar 

  14. De Roeck, W., Huveneers, F.: Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017)

    Article  ADS  Google Scholar 

  15. De Roeck, W., Huveneers, F., Müller, M., Schiulaz, M.: Absence of many-body mobility edges. Phys. Rev. B 93, 014203 (2016)

    Article  ADS  Google Scholar 

  16. De Roeck, W., Huveneers, F., Olla, S.: Subdiffusion in one-dimensional Hamiltonian chains with sparse interactions. J. Stat. Phys. (2020). https://doi.org/10.1007/s10955-020-02496-1

  17. De Roeck, W., Imbrie, J.Z.: Many-body localization: stability and instability. Philos. Trans. R. Soc. A 375, 20160422 (2017)

    Article  Google Scholar 

  18. De Roeck, W., Schütz, M.: Local perturbations perturb exponentially-locally. J. Math. Phys. 56, 061901 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Elgart, A., Klein, A., Stolz, G.: Droplet localization in the random XXZ model and its manifestations. J. Phys. A 51, 01LT02 (2018)

    Article  MathSciNet  Google Scholar 

  20. Elgart, A., Klein, A., Stolz, G.: Manifestations of dynamical localization in the disordered xxz spin chain. Commun. Math. Phys. 361, 1083–1113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Elgart, A., Klein, A., Stolz, G.: Many-body localization in the droplet spectrum of the random XXZ quantum spin chain. J. Funct. Anal. 275, 211–258 (2018)

    Article  MathSciNet  Google Scholar 

  22. Elgart, A., Shamis, M., Sodin, S.: Localisation for non-monotone Schrödinger operators. J. Eur. Math. Soc. 16, 909–924 (2014)

    Article  MathSciNet  Google Scholar 

  23. Germinet, F., Klein, A.: Bootstrap multiscale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Goihl, M., Eisert, J., Krumnow, C.: Are many-body localized systems stable in the presence of a small bath?, arXiv:1902.0437 (2019)

  25. Hamza, E., Sims, R., Stolz, G.: Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315, 215–239 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014)

    Article  ADS  Google Scholar 

  27. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Imbrie, J.Z., Ros, V., Scardicchio, A.: Review: local integrals of motion in many-body localized systems. Ann. Phys. (Berlin) 529, 1600278 (2017)

    Article  ADS  Google Scholar 

  29. Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys. 78, 201–224 (1980)

    Article  ADS  Google Scholar 

  30. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407–466 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  31. Luitz, D.J., Huveneers, F., De Roeck, W.: How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017)

    Article  ADS  Google Scholar 

  32. Macé, N., Laflorencie, N., Alet, F.: Many-body localization in a quasiperiodic fibonacci chain. SciPost Phys. 6, 050 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Mastropietro, V.: Coupled identical localized fermionic chains with quasi-random disorder. Phys. Rev. B 95, 075155 (2017)

    Article  ADS  Google Scholar 

  34. Mastropietro, V.: Localization in interacting fermionic chains with quasi-random disorder. Commun. Math. Phys. 351, 283–309 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nachtergaele, B., Sims, R., Young, A.: Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms. J. Math. Phys. 60, 061101 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Oganesyan, V., Huse, D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  38. Pal, A., Huse, D.A.: The many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  39. Serbyn, M., Papić, Z., Abanin, D.A.: Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013)

    Article  ADS  Google Scholar 

  40. Serbyn, M., Papic, Z., Abanin, D.A.: Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett. 110, 260601 (2013)

    Article  ADS  Google Scholar 

  41. Sims, R., Warzel, S.: Decay of determinantal and Pfaffian correlation functionals in one-dimensional lattices. Commun. Math. Phys. 347, 903–931 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Sǔntajs, J., Bonča, J., Prosen, T., Vidmar, L.: Quantum chaos challenges many-body localization, arXiv:1905.06345 (2019)

  43. Thiery, T., Huveneers, F., Müller, M., De Roeck, W.: Many-body delocalization as a quantum avalanche. Phys. Rev. Lett. 121, 140601 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This article reports on work supported by the National Science Foundation under Grants DMS-1207995, DMS-1515850 and DMS-1813149. We also acknowledge support from the Centre de Recherches Mathématiques (Montréal) and the Simons Foundation during Fall 2018, when part of this work was carried out. Our work was stimulated by fruitful discussions with Gunter Stolz and Simone Warzel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Communicated by Yoshiko Ogata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Lieb–Robinson Bounds

Appendix A: Lieb–Robinson Bounds

In this appendix we develop a bound on the velocity of propagation under the Heisenberg dynamics which ignores interaction terms supported in a given subset of the lattice. We use the results of [36], in which Lieb–Robinson bounds which do not depend on on-site interactions are developed for Hamiltonians expressed in terms of time-dependent interactions.

Let \((\Gamma ,d)\) denote a countable metric space, and let \(\mathcal {P}_0(\Gamma )\) denote the collection of finite subsets of \(\Gamma \). Assign a spin Hilbert space \(\mathcal {H}_x\) to each \(x\in \Gamma \). The algebra of local observables is given by \(\mathcal {A}^\text {loc}=\cup _{X\in \mathcal {P}_0(\Gamma )} \mathcal {A}_X\), where \(\mathcal {A}_X=\bigotimes _{x\in X}\mathcal {B}(\mathcal {H})\). A time-dependent interaction \(\Phi :\mathbb {R}\times \mathcal {P}_0(\Gamma )\) is called continuous if \(t\mapsto \Phi (t,X)\) is norm continuous for every \(X\in \mathcal {P}_0(\Gamma )\).

To measure the spatial decay of the interaction we introduce the notion of an F-function. Let \((\Gamma ,d)\) denote a countable metric space. Then an F-function on \((\Gamma ,d)\) is a function \(F:[0,\infty )\rightarrow (0,\infty )\) such that

  1. (1)

    F is non-increasing.

  2. (2)

    F is integrable, i.e.,

    $$\begin{aligned} \Vert F\Vert =\sup _{x\in \Gamma }\sum _{y\in \Gamma } F(d(x,y))<\infty . \end{aligned}$$
    (A.1)
  3. (3)

    F satisfies the convolution identity,

    $$\begin{aligned} C_F=\sup _{x,y\in \Gamma }\frac{1}{F(d(x,y))}\sum _{z\in \Gamma }F(d(x,z))F(d(z,y))<\infty . \end{aligned}$$
    (A.2)

If \(\mu >0\), it is easy to show that \(F_\mu (x)=e^{-\mu x}F(x)\) also defines an F function on \((\Gamma ,d)\) with \(\Vert F_\mu \Vert \le \Vert F\Vert \) and \(C_{F_\mu }\le C_F\).

Given an F-function F, we denote by \(\mathcal {B}_F\) the set of continuous interactions \(\Phi :\mathbb {R}\times \mathcal {P}_0(\Gamma )\rightarrow \mathcal {A}^\text {loc}\) such that the function on \(\mathbb {R}\)

$$\begin{aligned} t\mapsto \sup _{x,y\in \Gamma } \frac{1}{F(d(x,y))} \sum _{\begin{array}{c} x,y\in X\\ |X|>1 \end{array}}\Vert \Phi (t,X)\Vert \end{aligned}$$
(A.3)

is locally bounded.

Theorem A.1

(Theorem 3.1 in [36]) Let \(\Phi \in \mathcal {B}_{F_\mu }\) for some F-function F and \(\mu >0\), and let \(X,Y\in \mathcal {P}_0(\Gamma )\) with \(X\cap Y=\emptyset \). Then for any \(\Lambda \in \mathcal {P}_0(\Gamma )\) with \(X\cup Y\subseteq \Lambda \), we have

$$\begin{aligned} \sup _{\begin{array}{c} A\in \mathcal {A}_X^1\\ B\in \mathcal {A}_Y^1 \end{array}}\Vert [\tau _t^{H_\Lambda }(A),B]\Vert \le \frac{2 \Vert F\Vert }{C_{F_\mu }}\min \{|X|,|Y|\} (e^{2 C_{F_\mu } I(t)}-1)e^{-\mu d(X,Y)} \end{aligned}$$
(A.4)

for every \(t\in \mathbb {R}\), where

$$\begin{aligned} I(t)=\int _{\min \{0,t\}}^{\max \{0,t\}} \sup _{x,y\in \Gamma } \frac{e^{\mu d(x,y)}}{F(d(x,y))} \sum _{\begin{array}{c} x,y\in X\\ |X|>1 \end{array}}\Vert \Phi (s,X)\Vert ds. \end{aligned}$$
(A.5)

We will now apply the previous theorem to obtain a Lieb–Robinson bound which ignores interaction terms in certain parts of the lattice. For simplicity we restrict ourselves to one-dimensional finite volume systems. Neither of these restrictions is essential.

Suppose that we have a quantum spin chain \(\mathcal {H}=\bigotimes _{x=0}^n\mathcal {H}_x\) on the interval \(\Lambda _n=[0,n]\subset \mathbb {Z}_+\) together with a time-dependent Hamiltonian H(t) generated by an interaction \(\Phi (t):\mathcal {P}(\Lambda _n)\rightarrow \mathcal {B}(\mathcal {H})\). Let \(\mathcal {I}=\{I_j\}_{j=1}^m\) be a collection of disjoint subintervals \(I_j=[a_j,b_j]\subset \Lambda _n\), satisfying \(b_{j}<a_{j+1}\). For purposes of notation let \(b_0=0\) and \(a_{m+1}=n\). We seek to define an equivalent spin chain in which the spins located on the sites \([b_j,a_{j+1}]\) are identified. Define the contracted lattice \(\Gamma _{\mathcal {I}}\) by,

$$\begin{aligned} \Gamma _{\mathcal {I}}=\cup _{j=1}^m [a_j,b_j)\cup \{n\} \end{aligned}$$

Define a map \(\mathcal {C}:\Lambda _n\rightarrow \Gamma _{\mathcal {I}}\) by,

$$\begin{aligned} \mathcal {C}(x)={\left\{ \begin{array}{ll} a_{j} &{} \text { if }x\in [b_{j-1},a_{j}] \text { for some }j=1,2,\ldots ,m+1\\ x &{} \text { Otherwise} \end{array}\right. } \end{aligned}$$
(A.6)

Note that \(\mathcal {C}\) maps a site in \(\Lambda _n\) to its corresponding site in \(\Gamma _\mathcal {I}\). For each \(x\in \Gamma _{\mathcal {I}}\), define

$$\begin{aligned} \mathcal {H}_x'= \bigotimes _{z\in \mathcal {C}^{-1}(\{x\})}\mathcal {H}_z \end{aligned}$$
(A.7)

Then \(\bigotimes _{x=0}^n\mathcal {H}_x=\bigotimes _{x\in \Gamma _{\mathcal {I}}}\mathcal {H}_x'\), and an observable which has support X in \(\mathcal {A}_{\Lambda _n}\) has support \(\mathcal {C}(X)\) in \(\mathcal {A}_{\Gamma _\mathcal {I}}\). Define an interaction \(\tilde{\Phi }(t)\) on \(\Gamma _{\mathcal {I}}\) by,

$$\begin{aligned} \tilde{\Phi }(t)(X)=\sum _{\begin{array}{c} Z\subseteq \Lambda _n\\ \mathcal {C}(Z)=X \end{array}}\Phi (t)(Z) \end{aligned}$$
(A.8)

Then \(\tilde{\Phi }\) and \(\Phi \) generate the same Hamiltonian. With this setup we have the following proposition.

Theorem A.2

Suppose d is a metric on \(\Gamma _{\mathcal {I}}\). Let \(\mu >0\) and let F denote any F-function on \((\Gamma _{\mathcal {I}},d)\). Then for any \(X,Y\subseteq \Lambda _n\) with \(\mathcal {C}(X)\cap \mathcal {C}(Y)=\emptyset \) we have,

$$\begin{aligned} \sup _{\begin{array}{c} A\in \mathcal {A}_{X}^1\\ B\in \mathcal {A}_Y^1 \end{array}}\Vert [\tau _t^{H}(A),B]\Vert \le \frac{2\Vert F\Vert }{C_{F_\mu }}\min \{|\mathcal {C}(X)|,|\mathcal {C}(Y)|\}(e^{2C_{F_\mu } I(t)}-1)e^{-\mu d(\mathcal {C}(X),\mathcal {C}(Y))} \end{aligned}$$
(A.9)

holds for all \(t\in \mathbb {R}\), where

$$\begin{aligned} I(t)=\int _{\min \{0,t\}}^{\max \{0,t\}}\sup _{x,y\in \Gamma _\mathcal {I}}\frac{e^{\mu d(x,y)}}{F(d(x,y))}\sum _{\begin{array}{c} X\subseteq \Gamma _{\mathcal {I}}:\\ x,y\in X, \\ |X|>1 \end{array}}\Vert \tilde{\Phi }(s)(X)\Vert ds. \end{aligned}$$
(A.10)

Proof

Apply Theorem A.1 to the spin model \(\tilde{\Phi }\). \(\square \)

A few remarks about this theorem need to be made. Note that

$$\begin{aligned} \sum _{\begin{array}{c} X\subseteq \Gamma _\mathcal {I}:\\ x,y\in X,\\ |X|>1 \end{array}}\Vert \tilde{\Phi }(t)(X)\Vert =\sum _{\begin{array}{c} X\subseteq \Gamma _\mathcal {I}:\\ x,y\in X,\\ |X|>1 \end{array}} \Vert \sum _{\begin{array}{c} Z\subseteq \Lambda _n\\ \mathcal {C}(Z)=X \end{array}}\Phi (t)(Z) \Vert \le \sum _{\begin{array}{c} Z\subseteq \Lambda _n:\\ x,y\in Z,\\ |\mathcal {C}(Z)|>1 \end{array}}\Vert \Phi (t)(Z)\Vert \end{aligned}$$
(A.11)

for any pair \(x,y\in \Gamma _\mathcal {I}\). If \(Z\subset [b_{j-1},a_j]\) for some j, then \(\mathcal {C}(Z)\) will contain at most one point of \(\Gamma _\mathcal {I}\). Therefore Theorem A.2 provides an upper bound on the speed of propagation which excludes elements from the original interaction with support Z.

While Theorem A.2 was stated for an arbitrary metric d on \(\Gamma _\mathcal {I}\), there are two natural metrics which both allow \((\Gamma _\mathcal {I},d)\) to be isometrically embedded into \(\mathbb {Z}_+\). One choice to simply restrict the usual metric on \(\mathbb {Z}_+\) to \(\Gamma _\mathcal {I}\). Another choice is to define d so that \((\Gamma _{\mathcal {I}},d)\) isometrically embeds into [0, L], where \(L=\sum _{j=1}^m(b_j-a_j)\). With either of these metrics, given an F-function F on \(\mathbb {Z}_+\) with the usual metric, the constants in Theorem A.2 can be chosen to be \(c_0=2\Vert F\Vert /C_{F_\mu }\) and \(c_1=2 C_{F_\mu }\). In particular, these constants do not depend on n or the collection of intervals \(\mathcal {I}\). This follows from the fact that \(\Gamma _\mathcal {I}\) isometrically embeds into \((\mathbb {Z}_+,|\cdot |)\) when equipped with either of these metrics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachtergaele, B., Reschke, J. Slow Propagation in Some Disordered Quantum Spin Chains. J Stat Phys 182, 12 (2021). https://doi.org/10.1007/s10955-020-02681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-020-02681-2

Navigation