Skip to main content
Log in

Information scrambling and redistribution of quantum correlations through dynamical evolution in spin chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the propagation of local bipartite quantum correlations, along with the tripartite mutual information to characterize the information scrambling through dynamical evolution of spin chains. Starting from an initial state with the first pair of spins in a Bell state, we study how quantum correlations spread to other parts of the system, using different representative spin Hamiltonians, viz. the Heisenberg Model, a spin-conserving model, the transverse-field XY model, a non-conserving but integrable model, and the kicked Harper model, a spin conserving but nonintegrable model. We show that the local correlations spread consistently in the case of spin-conserving dynamics in both integrable and nonintegrable cases, with a strictly nonnegative tripartite mutual information. In contrast, in the case of non-conserving dynamics, tripartite mutual information is negative and local pair correlations do not propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the authors on reasonable request.

References

  1. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  2. Subrahmanyam, V.: Entanglement dynamics and quantum-state transport in spin chains. Phys. Rev. A 69, 034304 (2004)

    Article  ADS  Google Scholar 

  3. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  4. Wang, Z.-M., Byrd, M., Shao, B., Zou, J.: Quantum communication through anisotropic Heisenberg xy spin chains. Phys. Lett. A 373(6), 636–643 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Subrahmanyam, V., Lakshminarayan, A.: Transport of entanglement through a Heisenberg-xy spin chain. Phys. Lett. A 349(1), 164–169 (2006)

    Article  ADS  Google Scholar 

  6. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Jordan, P., Wigner, E.: Über das paulische äquivalenzverbot. Z. Phys. 47(9), 631–651 (1928)

    Article  ADS  MATH  Google Scholar 

  8. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Takahashi, M.: Thermodynamics of One-dimensional Solvable models. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  10. Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der Hnearen Atomkette.Zeitschrift für Physik 71(3), 205–226 (1931)

  11. Ganahl, M., Rabel, E., Essler, F.H.L., Evertz, H.G.: Observation of complex bound states in the spin-\(1/2\) Heisenberg \(xxz\) chain using local quantum quenches. Phys. Rev. Lett. 108, 077206 (2012)

    Article  ADS  Google Scholar 

  12. Fukuhara, T., Schauß, P., Endres, M., Hild, S., Cheneau, M., Bloch, I., Gross, C.: Microscopic observation of magnon bound states and their dynamics. Nature 502(7469), 76–79 (2013)

    Article  ADS  Google Scholar 

  13. Vlijm, R., Ganahl, M., Fioretto, D., Brockmann, M., Haque, M., Evertz, H.G., Caux, J.-S.: Quasi-soliton scattering in quantum spin chains. Phys. Rev. B 92, 214427 (2015)

    Article  ADS  Google Scholar 

  14. Steinigeweg, R., Langer, S., Heidrich-Meisner, F., McCulloch, I.P., Brenig, W.: Coherent spin-current oscillations in transverse magnetic fields. Phys. Rev. Lett. 106, 160602 (2011)

    Article  ADS  Google Scholar 

  15. Foster, M.S., Berkelbach, T.C., Reichman, D.R., Yuzbashyan, E.A.: Quantum quench spectroscopy of a Luttinger liquid: Ultrarelativistic density wave dynamics due to fractionalization in an \(xxz\) chain. Phys. Rev. B 84, 085146 (2011)

    Article  ADS  Google Scholar 

  16. Cazalilla, M.A., Chung, M.-C.: Quantum quenches in the Luttinger model and its close relatives. J. Stat. Mech. Theory Exp. 2016(06), 064004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mukherjee, V., Divakaran, U., Dutta, A., Sen, D.: Quenching dynamics of a quantum \(xy\) spin-\(\frac{1}{2}\) chain in a transverse field. Phys. Rev. B 76, 174303 (2007)

    Article  ADS  Google Scholar 

  18. Nag, T., Dutta, A., Patra, A.: Quenching dynamics and quantum information. Int. J. Mod. Phys. B 27, 1345036 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Manmana, S.R., Wessel, S., Noack, R.M., Muramatsu, A.: Time evolution of correlations in strongly interacting fermions after a quantum quench. Phys. Rev. B 79, 155104 (2009)

    Article  ADS  Google Scholar 

  20. Sodano, P., Bayat, A., Bose, S.: Kondo cloud mediated long-range entanglement after local quench in a spin chain. Phys. Rev. B 81, 100412 (2010)

    Article  ADS  Google Scholar 

  21. Chiara, G.D., Montangero, S., Calabrese, P., Fazio, R.: Entanglement entropy dynamics of Heisenberg chains. J. Stat. Mech. Theory Exp. 2006(03), P03001–P03001 (2006)

    Article  MathSciNet  Google Scholar 

  22. Safavi-Naini, A., Wall, M.L., Acevedo, O.L., Rey, A.M., Nandkishore, R.M.: Quantum dynamics of disordered spin chains with power-law interactions. Phys. Rev. A 99 (2019)

  23. De Roeck, W., Huveneers, F.: Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95 (2017)

  24. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007(09), 120–120 (2007)

    Article  MathSciNet  Google Scholar 

  25. Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 2008(10), 065–065 (2008)

    Article  MathSciNet  Google Scholar 

  26. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, London (2006)

    MATH  Google Scholar 

  27. Iyoda, E., Sagawa, T.: Scrambling of quantum information in quantum many-body systems. Phys. Rev. A 97, 042330 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Campisi, M., Goold, J.: Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017)

    Article  ADS  Google Scholar 

  29. Landsman, K.A., Figgatt, C., Schuster, T., Linke, N.M., Yoshida, B., Yao, N.Y., Monroe, C.: Verified quantum information scrambling. Nature 567(7746), 61–65 (2019)

    Article  ADS  Google Scholar 

  30. Seshadri, A., Madhok, V., Lakshminarayan, A.: Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos. Phys. Rev. E 98, 052205 (2018)

    Article  Google Scholar 

  31. Hosur, P., Qi, X.-L., Roberts, D.A., Yoshida, B.: Chaos in quantum channels. J. High Energy Phys. 2016(2), 4 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cerf, N.J., Adami, C.: Information theory of quantum entanglement and measurement. Phys. D Nonlinear Phenom. 120(1), 62–81 (1998). (Proceedings of the Fourth Workshop on Physics and Consumption)

  33. Subrahmanyam, V.: Quantum entanglement in Heisenberg antiferromagnets. Phys. Rev. A 69, 022311 (2004)

    Article  ADS  Google Scholar 

  34. Kundu, A., Subrahmanyam, V.: Distribution of quantum correlations and conditional entropy in Heisenberg spin chains. J. Phys. A Math. Theor. 46(43), 435304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  36. Sur, S., Subrahmanyam, V.: Remotely detecting the signal of a local decohering process in spin chains. J. Phys. A Math. Theor. 50(20), 205303 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Sur, S., Subrahmanyam, V.: Interference of the signal from a local dynamical process with the quantum state propagation in spin chains. J. Phys. A Math. Theor. 52(1), 015302 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Izyumov, Y.A., Skryabin, Y.N.: Statistical Mechanics of Magnetically Ordered Systems. Springer, Heidelberg (1988)

    Google Scholar 

  39. Lima, R., Shepelyansky, D.: Fast delocalization in a model of quantum kicked rotator. Phys. Rev. Lett. 67, 1377–1380 (1991)

    Article  ADS  Google Scholar 

  40. Lakshminarayan, A., Subrahmanyam, V.: Entanglement sharing in one-particle states. Phys. Rev. A 67, 052304 (2003)

    Article  ADS  Google Scholar 

  41. Sur, S., Ghosh, A.: Quantum counterpart of measure synchronization: a study on a pair of harper systems. Phys. Lett. A 384(8), 126176 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bogoljubov, N.N.: On a new method in the theory of superconductivity. Nuovo Cimento 7(6), 794 (1958)

    Article  MathSciNet  Google Scholar 

  43. Valatin, J.G.: Comments on the theory of superconductivity. Nuovo Cimento 7(6), 843 (1958)

    Article  MathSciNet  Google Scholar 

  44. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Persesus Books, Massachusetts (1995)

    Google Scholar 

  45. Lindgren, I., Morrison, J.: Atomic Many-Body Theory. Springer, Heidelberg (1982)

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Department of Physics, Indian Institute of Technology, Kanpur, where part of the work was carried out. VS acknowledges the support of Science and Engineering Research Board, through MATRICS scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Sur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pairwise correlation functions for the XY model with transverse field

The expectation values of the correlation functions \(\langle c^{\dagger }_jc_j\rangle \), \(\langle c_jc^{\dagger }_{j+1}\rangle \), \(\langle c_jc_{j+1} \rangle \) and \(\langle c^{\dagger }_jc_jc^{\dagger }_{j+1}c_{j+1}\rangle \) as a function of time can be calculated analytically as shown as

$$\begin{aligned} \langle c^{\dagger }_jc_j\rangle _t&= \frac{1}{N} \sum _{q_1,q_2} e^{iq_1j-iq_2j} \langle (\chi ^*_{q_1} c^{\dagger }_{q_1} + \xi ^*_{q_1} c_{-q_1}) (\chi _{q_2} c_{q_2} + \xi _{q_2} c_{-q_2}^\dagger )\rangle ,\nonumber \\ \langle c_jc_{j+1}\rangle _t&= \frac{1}{N}\sum _{q_1,q_2} e^{iq_1j-iq_2(j+1)} \langle (\chi _{q_1} c_{q_1} + \xi _{q_1} c_{-q_1}^\dagger ) (\chi _{q_2} c_{q_2} + \xi _{q_2} c_{-q_2}^\dagger )\rangle ,\nonumber \\ \langle c_jc^{\dagger }_{j+1}\rangle _t&= \frac{1}{N}\sum _{q_1,q_2} e^{-iq_1j+iq_2(j+1)}\langle (\chi _{q_1} c_{q_1} + \xi _{q_1} c_{-q_1}^\dagger )(\chi ^*_{q_2} c^{\dagger }_{q_2} + \xi ^*_{q_2} c_{-q_2})\rangle ,\nonumber \\ \langle c^{\dagger }_jc_jc^{\dagger }_{j+1}c_{j+1}\rangle _t&= \frac{1}{N^2}\sum _{q_1,q_2,q_3,q_4}e^{iq_1j-iq_2j+iq_3(j+1)-iq_4(j+1)} \langle (\chi ^*_{q_1} c^{\dagger }_{q_1} + \xi ^*_{q_1} c_{-q_1})\nonumber \\&\quad (\chi _{q_2} c_{q_2} + \xi _{q_2} c_{-q_2}^\dagger ) (\chi ^*_{q_3} c^{\dagger }_{q_3} +\xi ^*_{q_3} c_{-q_3})(\chi _{q_4} c_{q_4} + \xi _{q_4}c_{-q_4}^\dagger )\rangle . \end{aligned}$$
(A1)
Fig. 9
figure 9

Correlation functions between the sites i and \(i+1\) are shown as functions of time t for the transverse field XY model for various Hamiltonian parameters. \(\mathrm{Re} \langle \sigma ^+_i \sigma ^-_{i+1}\rangle _t\) is plotted as a function of time for parameters: a \(J_x =0.7, J_y = 0.3\) and \(h = 0.1\), b \(J_x =0.7, J_y = 0.3\) and \(h = 1.0\), c \(J_x =0.7, J_y = 0.3\) and \(h = 10.0\). \(\mathrm{Re} \langle \sigma ^+_i \sigma ^+_{i+1}\rangle _t\) is plotted as a function of time for parameters: d \(J_x =0.7, J_y = 0.3\) and \(h = 0.1\), e \(J_x =0.7, J_y = 0.3\) and \(h = 1.0\), f \(J_x =0.7, J_y = 0.3\) and \(h = 10.0\). \(\langle \sigma ^z_i \sigma ^z_{i+1}\rangle _t\) for parameters: g \(J_x =0.7, J_y = 0.3\) and \(h = 0.1\), h \(J_x =0.7, J_y = 0.3\) and \(h = 1.0\), i \(J_x =0.7, J_y = 0.3\) and \(h = 10.0\). The results are shown from analytical calculations for the initial state: \(\vert \Psi (0)\rangle = (\vert 10\ldots 0\rangle +\vert 010\ldots 0\rangle )/\sqrt{2}\)

We see from the above set of equations that the time evolution mixes different operators. Any product of fermion operators in the real space involves N sums over momenta values in real space. The expectation values of products of fermionic operators can be straightforwardly evaluated using Wick’s theorem [44, 45]. However, there will be N sums over the momentum variables. For a large value of N, the above sums are evaluated by converting them to integrals from 0 to \(\pi \). The pairwise correlation functions between the nearest neighbors are plotted as functions of site index i and time t in Fig. 9. We have taken three sets of Hamiltonian parameters \((J_x = 0.7, J_y = 0.3, h = 0.1)\); \((J_x = 0.7, J_y = 0.3, h = 1.0)\) and \((J_x = 0.7, J_y = 0.3, h = 10.0)\) to illustrate the results. The total number of down (up) spins in the system is not conserved as \(J_x \ne J_y\). However, in the limit \(h \rightarrow \infty \), the dynamics is confined to a subspace of the total Hilbert space, as the Hamiltonian in this case commutes with the total number of down (up) spins. The initial state being \(\vert \Psi \rangle = \frac{1}{\sqrt{2}}(100...0 + 010...0)\), the initial values of the off-diagonal correlation function \(\langle \sigma ^+_i \sigma ^-_{i+1}\rangle \) is 0.5 the diagonal correlation function \(\langle \sigma ^z_i \sigma ^z_{i+1}\rangle \) is \(-1\) for the first pair and zero for all other pairs.

As time evolves, the correlation function \(\langle \sigma ^+_i \sigma ^-_{i+1}\rangle \) becomes nonzero for farther sites for later times implying a finite speed of propagation of correlations) for the case \(h = 0.1\) as shown in Fig. 9a. The value of the function \(\langle \sigma ^+_i \sigma ^-_{i+1} \rangle \) is nonzero within the ‘light cone’ but zero outside. For the case \(h = 1.0\), the correlation function \(\langle \sigma ^+_i \sigma ^-_{i+1} \rangle \) decays very quickly and becomes zero beyond the third site as shown in Fig. 9b. For the case \(h = 10.0\), the correlations propagate consistently and continuously to further sites with a finite speed as shown in Fig. 9c. The diagonal correlation function \(\langle \sigma ^z_i \sigma ^z_{i+1} \rangle \) becomes nonzero for farther sites quickly and propagation does not take place with a finite speed for the cases \(h = 0.1\) and \(h = 1.0\) as shown in Fig. 9d, e, respectively. For the case \(h = 10.0\), the value of the function \(\langle \sigma ^z_i \sigma ^z_{i+1} \rangle \) spreads with finite speed and its value is zero outside the light cone as shown in Fig. 9f. The correlation function \(\langle \sigma ^+_i \sigma ^+_{i+1} \rangle \) is plotted as a function of time and site index for the same set of Hamiltonian parameters in Fig. 9g–i, respectively. The expectation value of the correlation function \(\langle \sigma ^+_i \sigma ^+_{i+1} \rangle \) is initially zero and becomes nonzero as the number of down spins increases in the system. The values of \(\langle \sigma ^+_i \sigma ^+_{i+1} \rangle \) for the case \(h = 10.0\) in Fig. 9i is much smaller compared to the cases \(h = 0.1\) and \(h = 1.0\) as shown in Fig. 9g, h, respectively. This indicates that for a high value of h, less number of down spins is generated in the system as time evolves and the dynamics remains confined mainly in the one spin sector.

Appendix B: Pairwise correlation functions for the Ising model

For the Ising model, the time evolved expectation value of any operator O is given as

$$\begin{aligned} \langle O \rangle _t = \langle e^{iJt\sum _i \sigma ^x_{i} \sigma ^x_{i+1}} O e^{-iJt\sum _i \sigma ^x_{i} \sigma ^x_{i+1}} \rangle . \end{aligned}$$
(B1)

The forms of \(\langle \sigma ^z_j \rangle _t, \langle \sigma ^\pm _j\rangle _t, \langle \sigma ^z_j \sigma ^z_{j+1}\rangle _t \) and \(\langle \sigma ^+_j \sigma ^\mp _{j+1}\rangle _t\) can be given by the following

$$\begin{aligned} \langle \sigma ^z_j\rangle _t&= (C^4 +S^4 - 2C^2 S^2)\langle \sigma ^z_j\rangle + (2CS^3- 2C^3S) (\langle \sigma ^y_j \sigma ^x_{j+1}\rangle + \langle \sigma ^x_{j-1} \sigma ^y_{j}\rangle ) \nonumber \\&\quad -4C^2S^2 \langle \sigma ^x_{j-1} \sigma ^z_{j} \sigma ^x_{j+1}\rangle ,\nonumber \\ \langle \sigma ^\pm _j\rangle _t&= 0,\nonumber \\ \langle \sigma ^z_j \sigma ^z_{j+1}\rangle _t&= (C^6 +S^6 - C^4S^2 -C^2S^4)\langle \sigma ^z_j \sigma ^z_{j+1}\rangle + (CS^5+C^3S^3-2C^5S) (\langle \sigma ^z_j \sigma ^y_{j+1}\sigma ^x_{j+2}\rangle \nonumber \\&\quad + \langle \sigma ^x_{j-1} \sigma ^y_{j}\sigma ^z_{j+1}\rangle )+ (4C^2S^4 +4C^4S^2) \langle \sigma ^x_{j-1} \sigma ^y_{j} \sigma ^y_{j+1} \sigma ^x_{j+2} \rangle ,\nonumber \\ \langle \sigma ^+_j \sigma ^\mp _{j+1}\rangle _t&= (C^6 +S^6)\langle \sigma ^+_j \sigma ^\mp _{j+1}\rangle + (C^4S^2 +C^2S^4) (\langle \sigma ^+_j \sigma ^\pm _{j+1}\rangle + \langle \sigma ^-_j \sigma ^\pm _{j+1}\rangle + \langle \sigma ^-_j \sigma ^\mp _{j+1}\rangle ) \nonumber \\&\quad + (iC^5S - iC^3 S^3) \Big (\frac{1}{2}\langle \sigma ^+_j (1\mp \sigma ^z_{j+1}) \sigma ^x_{j+2} \rangle \nonumber \\&\quad + \frac{1}{2}\langle \sigma ^x_{j-1} (1+\sigma ^z_{j}) \sigma ^\mp _{j+1} \rangle + \frac{1}{4}(1+\sigma ^z_{j})(1\mp \sigma ^z_{j+1})\Big )\nonumber \\&\quad + (iCS^5 - iC^5 S) \Big (\frac{1}{2}\langle \sigma ^+_j (1\pm \sigma ^z_{j+1}) \sigma ^x_{j+2} \rangle \nonumber \\&\quad + \frac{1}{2}\langle \sigma ^x_{j-1} (1-\sigma ^z_{j+1}) \sigma ^\mp _{j+1} \rangle + \frac{1}{4}(1-\sigma ^z_{j})(1\pm \sigma ^z_{j+1})\Big )\nonumber \\&\quad +(C^2S^4+C^4S^2)\Big (\frac{1}{4} \langle \sigma ^x_{j-1} (1+\sigma ^z_{j})(1\pm \sigma ^z_{j+1})\sigma ^x_{j+2}\rangle \nonumber \\&\quad -\frac{1}{4} \langle \sigma ^x_{j-1} (1-\sigma ^z_{j})(1\pm \sigma ^z_{j+1})\sigma ^x_{j+2}\rangle \nonumber \\&\quad -\frac{1}{4} \langle \sigma ^x_{j-1} (1+\sigma ^z_{j})(1\mp \sigma ^z_{j+1})\sigma ^x_{j+2}\rangle +\frac{1}{4} \langle \sigma ^x_{j-1} (1-\sigma ^z_{j})(1\mp \sigma ^z_{j+1})\sigma ^x_{j+2}\rangle \nonumber \\&\quad + \frac{1}{2} \langle \sigma ^x_{j-1}\sigma ^-_{j} (1\mp \sigma ^z_{j+1})\rangle + \frac{1}{2} \langle \sigma ^x_{j-1}\sigma ^-_{j} (1\pm \sigma ^z_{j+1})\rangle - \frac{1}{2} \langle \sigma ^x_{j-1}\sigma ^+_{j} (1\pm \sigma ^z_{j+1})\rangle \nonumber \\&\quad - \frac{1}{2} \langle \sigma ^x_{j-1}\sigma ^+_{j} (1\mp \sigma ^z_{j+1})\rangle \Big ) +\frac{1}{2} \langle (1+\sigma ^z_{j})\sigma ^\pm _{j+1}\sigma ^x_{j+2} \rangle + \frac{1}{2} \langle (1+\sigma ^z_{j})\sigma ^\pm _{j+1}\sigma ^x_{j+2} \rangle \nonumber \\&\quad - \frac{1}{2} \langle (1-\sigma ^z_{j})\sigma ^\pm _{j+1}\sigma ^x_{j+2} \rangle -\frac{1}{2} \langle (1+\sigma ^z_{j})\sigma ^\pm _{j+1}\sigma ^x_{j+2} \rangle ), \end{aligned}$$
(B2)

with \(C \equiv \cos (Jt)\) and \(S \equiv \sin (Jt)\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, S., Subrahmanyam, V. Information scrambling and redistribution of quantum correlations through dynamical evolution in spin chains. Quantum Inf Process 21, 301 (2022). https://doi.org/10.1007/s11128-022-03641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03641-3

Keywords

Navigation