Skip to main content
Log in

Transport Properties of the Classical Toda Chain: Effect of a Pinning Potential

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider energy transport in the classical Toda chain in the presence of an additional pinning potential. The pinning potential is expected to destroy the integrability of the system and an interesting question is to see the signatures of this breaking of integrability on energy transport. We investigate this by a study of the non-equilibrium steady state of the system connected to heat baths as well as the study of equilibrium correlations. Typical signatures of integrable systems are a size-independent energy current, a flat bulk temperature profile and ballistic scaling of equilibrium dynamical correlations, these results being valid in the thermodynamic limit. We find that, as expected, these properties change drastically on introducing the pinning potential in the Toda model. In particular, we find that the effect of a harmonic pinning potential is drastically smaller at low temperatures, compared to a quartic pinning potential. We explain this by noting that at low temperatures the Toda potential can be approximated by a harmonic inter-particle potential for which the addition of harmonic pinning does not destroy integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lepri, S.: Thermal Transport in Low Dimensions. Springer International Publishing, Berlin (2016)

    Book  Google Scholar 

  2. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 128–150. Imperial College Press, London (2000)

    Chapter  Google Scholar 

  3. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  4. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  5. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073 (1967)

    Article  ADS  Google Scholar 

  6. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  7. Zotos, X.: Ballistic transport in classical and quantum integrable systems. J. Low Temp. Phys. 126, 1185 (2002)

    Article  ADS  Google Scholar 

  8. Mazur, P.: Non-ergodicity of phase functions in certain systems. Physics 43, 533 (1969)

    MathSciNet  Google Scholar 

  9. Suzuki, M.: Ergodicity, constants of motion, and bounds for susceptibilities. Physica 51, 277 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  10. Toda, M.: Solitons and heat conduction. Phys. Scr. 20, 424 (1979)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Shastry, B.S., Young, A.P.: Dynamics of energy transport in a Toda ring. Phys. Rev. B 82, 104306 (2010)

    Article  ADS  Google Scholar 

  12. Chen, S., Wang, J., Casati, G., Benenti, G.: Nonintegrability and the Fourier heat conduction law. Phys. Rev. E 90, 032134 (2014)

    Article  ADS  Google Scholar 

  13. Lepri, S., Livi, R., Politi, A.: Heat conduction in Chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896 (1997)

    Article  ADS  Google Scholar 

  14. Mai, T., Dhar, A., Narayan, O.: Equilibration and universal heat conduction in fermi-pasta-ulam chains. Phys. Rev. Lett. 98, 184301 (2007)

    Article  ADS  Google Scholar 

  15. Zhong, Y., Zhang, Y., Wang, J., Zhao, H.: Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions. Phys. Rev. E 85, 060102(R) (2012)

    Article  ADS  Google Scholar 

  16. Das, S.G., Dhar, A., Narayan, O.: Heat conduction in the \(\alpha -\beta \) fermi-pasta-ulam chain. J. Stat. Phys. 154, 204 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Hatano, T.: Heat conduction in the diatomic Toda lattice revisited. Phys. Rev. E 59, R1 (1999)

    Article  ADS  Google Scholar 

  18. Dhar, A.: Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Phys. Rev. Lett. 86, 3554 (2001)

    Article  ADS  Google Scholar 

  19. Grassberger, P., Nadler, W., Yang, L.: Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys. Rev. Lett. 89, 180601 (2002)

    Article  ADS  Google Scholar 

  20. Casati, G., Prosen, T.: Anomalous heat conduction in a one-dimensional ideal gas. Phys. Rev. E 67, 015203 (2003)

    Article  ADS  Google Scholar 

  21. Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 20 (2002)

    Article  Google Scholar 

  22. Van Beijeren, H.: Exact results for anomalous transport in one-dimensional hamiltonian systems. Phys. Rev. Lett. 108(18), 180601 (2012)

    Article  Google Scholar 

  23. Mendl, C.B., Spohn, H.: Dynamic correlators of fermi-pasta-ulam chains and nonlinear fluctuating hydrodynamics. Phys. Rev. Lett. 111, 230601 (2013)

    Article  ADS  Google Scholar 

  24. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Doyon, B., Spohn, H., Yoshimura, T.: A geometric viewpoint on generalized hydrodynamics. Nucl. Phys. B 926, 570–583 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Kundu, A., Dhar, A.: Equilibrium dynamical correlations in the Toda chain and other integrable models. Phys. Rev. E 94, 062130 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  27. Prosen, T., Zunkovic, B.: Macroscopic diffusive transport in a microscopically integrable Hamiltonian system. Phys. Rev. Lett. 111, 040602 (2013)

    Article  ADS  Google Scholar 

  28. Zhang, Z., Tang, C., Kang, J., Tong, P.: Dynamical energy equipartition of the Toda model with additional on-site potentials. Chin. Phys. B 26, 100505 (2017)

    Article  ADS  Google Scholar 

  29. Cao, X., Bulchandani, V.B., Moore, J.E.: Incomplete thermalization from trap-induced integrability breaking: lessons from classical hard rods. Phys. Rev. Lett. 120(16), 164101 (2018)

    Article  ADS  Google Scholar 

  30. Lebowitz, J.L., Scaramazza, J.A.: Ballistic transport in the classical Toda chain with harmonic pinning, arXiv:1801.07153

  31. Di Cintio, P., Lubini, S., Lepri, S., Livi, R.: Transport in perturbed classical integrable systems: the pinned Toda chain. Chaos Solitons Fractals 117, 249–254 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  32. Toda, M.: Waves in nonlinear lattice. Supp. Prog. Theor. Phys. 45, 174 (1970)

    Article  ADS  Google Scholar 

  33. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B 9, 1921 (1974)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Flaschka, H.: The Toda lattice II: existence of integrals. Phys. Rev. B 9, 1924 (1974)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, vol. 38. Springer Science Business Media, Berlin (2013)

    MATH  Google Scholar 

  36. Das, Avijit, et al.: Light-cone spreading of perturbations and the butterfly effect in a classical spin chain. Phys. Rev. Lett. 121(2), 024101 (2018)

    Article  ADS  Google Scholar 

  37. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Book  MATH  Google Scholar 

  38. Roy, D., Dhar, A.: Heat transport in ordered harmonic lattices. J. Stat. Phys. 131, 535 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We thank Cédric Bernardin, Stefano Olla, Herbert Spohn, Ovidiu Costin, Rodica Costin and Panayotis Kevrekidis for very useful comments. JAS thanks Mitchell Dorrell for his generous computer programming guidance. The work of JLL was supported by AFOSR Grant FA9550-16-1-0037. JAS was supported by a Rutgers University Bevier Fellowship. AD would like to thank the support from the grant EDNHS ANR-14-CE25-0011 of the French National Research Agency (ANR) and from Indo-French Centre for the Promotion of Advanced Research (IFCPAR) under Project 5604-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Kundu.

Additional information

Communicated by Giulio Biroli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, A., Kundu, A., Lebowitz, J.L. et al. Transport Properties of the Classical Toda Chain: Effect of a Pinning Potential. J Stat Phys 175, 1298–1310 (2019). https://doi.org/10.1007/s10955-019-02284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02284-6

Keywords

Navigation