Journal of Statistical Physics

, Volume 171, Issue 3, pp 400–426 | Cite as

The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice

  • Pavel Bleher
  • Brad Elwood
  • Dražen Petrović


We prove the Pfaffian Sign Theorem for the dimer model on a triangular lattice embedded in the torus. More specifically, we prove that the Pfaffian of the Kasteleyn periodic-periodic matrix is negative, while the Pfaffians of the Kasteleyn periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-antiperiodic matrices are all positive. The proof is based on the Kasteleyn identities and on small weight expansions. As an application, we obtain an asymptotic behavior of the dimer model partition function with an exponentially small error term.


Dimer model Exact solution Triangular lattice Periodic boundary conditions Pfaffian 



The authors thank Barry McCoy and Dan Ramras for useful discussions, and the referee for a simplified proof of Theorem 5.2.


  1. 1.
    Cimasoni, D., Pham, A.M.: Identities between dimer partition functions on different surfaces. J. Stat. Mech. Theory Exp. 2016, 103101 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cimasoni, D., Reshetikhin, N.: Dimers on surface graphs and spin structures I. Commun. Math. Phys. 275, 187–208 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fendley, P., Moessner, R., Sondhi, S.L.: Classical dimers on the triangular lattice. Phys. Rev. B 66, 214513 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Combin. 6, R6 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)zbMATHGoogle Scholar
  6. 6.
    Izmailian, NSh, Kenna, R.: Dimer model on a triangular lattice. Phys. Rev. E 84, 021107 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Kenyon, R.W., Sun, N., Wilson, D.B.: On the asymptotics of dimers on tori. Probab. Theory Relat. Fields 166(3), 971–1023 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kasteleyn, P.W.: The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics. Academic Press, London (1967)Google Scholar
  11. 11.
    McCoy, B.M.: Advanced Statistical Mechanics. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  12. 12.
    McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model, 2nd edn. Dover Publications Inc., New York (2014)zbMATHGoogle Scholar
  13. 13.
    Tesler, G.: Matchings in graphs on non-orientable surfaces. J. Combin. Theory Ser. B 78, 198–231 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indiana University–Purdue University IndianapolisIndianapolisUSA

Personalised recommendations