Skip to main content
Log in

Replica Bounds by Combinatorial Interpolation for Diluted Spin Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In two papers Franz et al. proved bounds for the free energy of diluted random constraints satisfaction problems, for a Poisson degree distribution (Franz and Leone in J Stat Phys 111(3–4):535–564, 2003) and a general distribution (Franz et al. in J Phys A 36(43), 10967, 2003). Panchenko and Talagrand (Probab Theo Relat Fields 130(3):319–336, 2004) simplified the proof and generalized the result of Franz and Leone (J Stat Phys 111(3–4):535–564, 2003) for the Poisson case. We provide a new proof for the general degree distribution case and as a corollary, we obtain new bounds for the size of the largest independent set (also known as hard core model) in a large random regular graph. Our proof uses a combinatorial interpolation based on biased random walks (Salez in Combin Probab Comput 25(03):436–447, 2016) and allows to bypass the arguments in Franz et al. (J Phys A 36(43):10967, 2003) based on the study of the Sherrington–Kirkpatrick (SK) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbe, E., Montanari, A.: Conditional Random Fields, Planted Constraint Satisfaction and Entropy Concentration. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 332–346. Springer, Berlin (2013)

    Chapter  Google Scholar 

  2. Barbier, J., Krzakala, F., Zdeborová, L., Zhang, P.: The hard-core model on random graphs revisited. J. Phys. 473(1), 012021 (2013)

    Google Scholar 

  3. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 105–114 (2010)

  4. Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs. Acta Math. 217(2), 263–340 (2016)

    Article  MathSciNet  Google Scholar 

  5. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111(3–4), 535–564 (2003)

    Article  MathSciNet  Google Scholar 

  6. Franz, S., Leone, M., Toninelli, F.L.: Replica bounds for diluted non-Poissonian spin systems. J. Phys. A 36(43), 10967 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Guerra, F.: Fluctuations and thermodynamic variables in mean field spin glass models (2012). arXiv preprint arXiv:1212.2905

  9. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hoppen, C., Wormald, N.: Local algorithms, regular graphs of large girth, and random regular graphs (2013). arXiv preprint arXiv:1308.0266

  11. Janson, S.: The probability that a random multigraph is simple. Comb. Probab. Comput. 18(1–2), 205–225 (2009)

    Article  MathSciNet  Google Scholar 

  12. Janson, S., et al.: The probability that a random multigraph is simple. J. Appl. Probab. 51, 123–137 (2014)

    Article  MathSciNet  Google Scholar 

  13. McKay, B.D.: Independent sets in regular graphs of high girth. Ars Combin. 23, 179–185 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Montanari, A.: Tight bounds for LDPC and LDGM codes under MAP decoding. CoRR, cs.IT/0407060, (2004)

  15. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Probab. Theo. Relat. Fields 130(3), 319–336 (2004)

    Article  MathSciNet  Google Scholar 

  17. Panchenko, D., Talagrand, M.: Guerra’s interpolation using Derrida–Ruelle cascades (2007). arXiv preprint arXiv:0708.3641

  18. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43(23), 1754 (1979)

    Article  ADS  Google Scholar 

  19. Parisi, G.: A sequence of approximated solutions to the SK model for spin glasses. J. Phys. A 13(4), L115 (1980)

    Article  ADS  Google Scholar 

  20. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108(2), 225–239 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. Salez, J.: The interpolation method for random graphs with prescribed degrees. Combin. Probab. Comput. 25(03), 436–447 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mendes Oulamara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lelarge, M., Oulamara, M. Replica Bounds by Combinatorial Interpolation for Diluted Spin Systems. J Stat Phys 173, 917–940 (2018). https://doi.org/10.1007/s10955-018-1964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1964-6

Keywords

Navigation