Skip to main content
Log in

Maximum independent sets on random regular graphs

  • Published:
Acta Mathematica

Abstract

We determine the asymptotics of the independence number of the random d-regular graph for all \({d\geq d_0}\). It is highly concentrated, with constant-order fluctuations around \({n\alpha_*-c_*\log n}\) for explicit constants \({\alpha_*(d)}\) and \({c_*(d)}\). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Chtcherba, A., Istrate, G. & Moore, C., The phase transition in 1-in-k-SAT and NAE-3-SAT, in Proceedings of the 12th ACM–SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), pp. 721–722. SIAM, Philadelphia, PA, 2001.

  2. Achlioptas D., Naor A.: The two possible values of the chromatic number of a random graph. Ann. of Math., 162, 1335–1351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achlioptas D., Naor A., Peres Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    Article  Google Scholar 

  4. Achlioptas, D. & Peres, Y., The threshold for random k-SAT is 2k (ln 2−O(k)), in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (New York, 2013), pp. 223–231. ACM, New York, 2003.

  5. Achlioptas D., Ricci-Tersenghi F.: Random formulas have frozen variables. SIAM J. Comput. 39, 260–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aldous D. J.: The \({\zeta(2)}\) limit in the random assignment problem. Random Structures Algorithms, 18, 381–418 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aldous, D. J. Open problems. Posted online, 2003.

  8. Aldous D. J., Lyons R.: Processes on unimodular random networks. Electron. J. Probab. 12, 1454–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aldous, D. J. & Steele, J. M., The objective method: probabilistic combinatorial optimization and local weak convergence, in Probability on Discrete Structures, Encyclopaedia Math. Sci., 110, pp. 1–72. Springer, Berlin, 2004.

  10. Barbier, J., Krz̧akała, F., Zdeborová, L. & Zhang, P., The hard-core model on random graphs revisited. J. Phys. Conf. Ser., 473 (2013), 012021, 9 pp.

  11. Bayati, M., Gamarnik, D. & Tetali, P., Combinatorial approach to the interpolation method and scaling limits in sparse random graphs, in Proceedings of the 2010 ACM International Symposium on Theory of Computing (New York, 2010), pp. 105–114. ACM, New York, 2010.

  12. Benjamini I., Schramm O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6, 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bollobás B.: The independence ratio of regular graphs. Proc. Amer. Math. Soc. 83, 433–436 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bollobás B., Borgs C., Chayes J. T., Kim J. H., Wilson D. B.: The scaling window of the 2-SAT transition. Random Structures Algorithms 18, 201–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braunstein A., Mézard M., Zecchina R.: Survey propagation: an algorithm for satisfiability. Random Structures Algorithms 27, 201–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chvatal, V. & Reed, B., Mick gets some (the odds are on his side), in Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (Pittsburgh, 1992), pp. 620–627. IEEE Computer Society, Washington, DC, 1992.

  17. Coja-Oghlan A., Efthymiou C., Hetterich S.: On the chromatic number of random regular graphs. J. Combin. Theory Ser. B 116, 367–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coja-Oghlan A., Panagiotou K.: The asymptotic k-SAT threshold. Adv. Math. 288, 985–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dembo A., Montanari A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24, 137–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dembo A., Montanari A., Sly A., Sun N.: The replica symmetric solution for Potts models on d-regular graphs. Comm. Math. Phys. 327, 551–575 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dembo A., Montanari A., Sun N.: Factor models on locally tree-like graphs. Ann. Probab. 41, 4162–4213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dembo, A. & Zeitouni, O., Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, 38. Springer, Berlin–Heidelberg, 2010.

  23. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R. & Rink, M., Tight thresholds for cuckoo hashing via XORSAT, in Automata, Languages and Programming (Bordeaux, 2010), pp. 213–225. Springer, Berlin–Heidelberg, 2010.

  24. Ding, J. & Sly, N. A. S, Satisfiability threshold for random regular NAE-SAT, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing (New York, 2014), pp. 814–822. ACM, New York, 2014.

  25. Frieze A., Łuczak T.: On the independence and chromatic numbers of random regular graphs. J. Combin. Theory Ser. B 54, 123–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frieze A., Suen S.: Analysis of two simple heuristics on a random instance of k-SAT. J. Algorithms 20, 312–355 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu Y., Anderson P. W.: Application of statistical mechanics to NP-complete problems in combinatorial optimisation. J. Phys. A 19, 1605–1620 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grimmett G. R., McDiarmid C. J. H.: On colouring random graphs. Math. Proc. Cambridge Philos. Soc. 77, 313–324 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hartmann, A. K. & Weigt, M., Phase Transitions in Combinatorial Optimization Problems. Wiley-VCH Verlag, Weinheim, 2005.

  30. Janson, S., Łuczak, T. & Rucinski, A., Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

  31. Karp, R. M., Reducibility among combinatorial problems, in Complexity of Computer Computations, pp. 85–103. Plenum, New York, 1972.

  32. Kirousis L. M., Kranakis E., Krizanc D., Stamatiou Y. C.: Approximating the unsatisfiability threshold of random formulas. Random Structures Algorithms 12, 253–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Krz̧akała F., Montanari A., Ricci-Tersenghi F., Semerjian G., Zdeborová L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104, 10318–10323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maneva, E., Mossel, E. & Wainwright, M. J., A new look at survey propagation and its generalizations. J. ACM, 54 (2007), Art. 17, 41 pp.

  35. McKay B. D.: Independent sets in regular graphs of high girth. Ars Combin. 23, 179–185 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Mézard, M. & Montanari, A., Information, Physics, and Computation. Oxford Graduate Texts. Oxford Univ. Press, Oxford, 2009.

  37. Mézard M., Parisi G.: Replicas and optimization. J. Physique Lett. 46, 771–778 (1985)

    Article  Google Scholar 

  38. Mézard M., Parisi G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001)

    Article  MathSciNet  Google Scholar 

  39. Panchenko, D., The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York, 2013.

  40. Pittel B., Sorkin G.B.: The satisfiability threshold for k-XORSAT. Combin. Probab. Comput. 25, 236–268 (2016)

    Article  MathSciNet  Google Scholar 

  41. Rivoire, O., Phases vitreuses, optimisation et grandes déviations. Ph.D. Thesis, Université Paris-Sud, Orsay, 2005.

  42. Talagrand M.: The Parisi formula. Ann. of Math. 163, 221–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wormald N. C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wormald N. C. Models of random regular graphs, in Surveys in Combinatorics (Canterbury, 1999), London Math. Soc. Lecture Note Ser., 267, pp. 239–298. Cambridge Univ. Press, Cambridge, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ding.

Additional information

Research supported by NSF grant DMS-1313596 (J. D.), Sloan Research Fellowship (A. S.), NDSEG and NSF GRF (N. S.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Sly, A. & Sun, N. Maximum independent sets on random regular graphs. Acta Math 217, 263–340 (2016). https://doi.org/10.1007/s11511-017-0145-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-017-0145-9

Navigation