Skip to main content
Log in

On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail. In the later situation we also present a simple framework for establishing the existence of invariant measures when the usual approach relying on the Krylov–Bogolyubov procedure and compactness fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. [31] also coined the term ‘asymptotic coupling’ which was later defined more generally in [34].

  2. These left and right actions of P are consistent with the case when \(H\) is the finite set \(\{1,\dots ,n\}\) and P is a \(n\times n\) matrix given by \(P_{ik}=\mathbb {P}( \text { transition }i\rightarrow j)\). Then \(\phi \in \mathbb {R}^n\) is a column vector and \(\nu \in \mathbb {R}^n\) is a row vector whose nonnegative entries sum to one. As such, \(P \phi \) and \(\nu P\) have the standard meaning given my matrix multiplication.

  3. Recall that a measurable set A is invariant for P relative to \(\mu \) if \(P(u,A)=1\) for \(\mu \)-a.e. \(u \in A\) and if \(P(u,A)=0\) for \(\mu \)-a.e. \(u \not \in A\). More compactly this say that A is invariant for P relative \(\mu \) if \(P 1 \! \! 1_{A} = 1 \! \! 1_{A}\), \(\mu \)-a.e.

  4. Here a measurable set A is invariant for \(\theta \) relative to a probability measure M on \(H^\mathbf {N}\) if \(\theta ^{-1}(A) = A \text { mod }M\), which is to say the symmetric difference \(\theta ^{-1}(A) \Delta A\) is measure zero for M.

  5. Of course, non-adapted controls make things significantly more technical. In particular, the classical Girsanov Theorem can not be used.

  6. \(\sigma \) need not be invertible. As long as the range of G is contained in the range of \(\sigma \) then \(\sigma ^{-1}\) can be taken to be the pseudo-inverse.

  7. Taking \(G(x,\widetilde{y})= F(x) -F(\widetilde{y}) + \lambda \tfrac{x-\widetilde{y}}{|x-\widetilde{y}|}\) leads to \(\rho \) dynamics which converge to zero in finite time. This can be used to prove convergence in total variation norm. However it is less useful when one takes \(G(x,\widetilde{y})= \Pi (F(x) -F(\widetilde{y}) + \lambda \tfrac{x-\widetilde{y}}{|x-\widetilde{y}|})\) as the remaining degrees of freedom only contract asymptotically at \(t \rightarrow \infty \). Nonetheless, such a control can simplify the convergence analysis in some cases.

  8. Recall that for any continuous martingale \(\{M(t)\}_{t\ge 0}\),

    $$\begin{aligned} \mathbb {P}\Bigg ( \sup _{t \ge 0} \ M(t) - \gamma \langle M \rangle (t) \, \ge \, R \Bigg ) \le e^{-\gamma R} \end{aligned}$$
    (3.5)

    for any \(R, \gamma >0\) where \( \langle M \rangle (t)\) is the quadratic variation of M(t).

References

  1. Albeverio, S., Flandoli, F., Sinai, Y.G.: SPDE in hydrodynamic: recent progress and prospects, vol. 1942 of Lecture Notes in Mathematics. Springer, Berlin (2008). In: Da Prato G., Röckner M. (eds.) Lectures given at the C.I.M.E. Summer School held in Cetraro, Aug 29–Sept 3 2005

  2. Bishop, A.R., Fesser, K., Lomdahl, P.S., Trullinger, S.E.: Influence of solitons in the initial state on chaos in the driven damped Sine–Gordon system. Phys. D Nonlinear Phenom. 7(1), 259–279 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bricmont, J., Kupiainen, A., Lefevere, R.: Ergodicity of the 2D Navier–Stokes equations with random forcing. Commun. Math. Phys. 224(1), 65–81 (2001). Dedicated to Joel L. Lebowitz

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bricmont, J., Kupiainen, A., Lefevere, R.: Exponential mixing of the 2D stochastic Navier–Stokes dynamics. Commun. Math. Phys. 230(1), 87–132 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bishop, A.R., Lomdahl, P.S.: Nonlinear dynamics in driven, damped Sine–Gordon systems. Phys. D Nonlinear Phenom. 18(1), 54–66 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bakhtin, Y., Mattingly, J.C.: Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations. Commun. Contemp. Math. 7(5), 553–582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988)

    MATH  Google Scholar 

  8. Constantin, P., Glatt-Holtz, N., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330, 819 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a leray–\(\alpha \) model of turbulence. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol. 461, pp. 629–649. The Royal Society (2005)

  10. Caraballo, T., Kloeden, P.E., Real, J.: Pullback and forward attractors for a damped wave equation with delays. Stoch. Dyn. 4(03), 405–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified bardina turbulence models. arXiv preprint arXiv:physics/0608096 (2006)

  12. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2) 166(1), 245–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Physica D 240(Issues 1415, 2011), 1123–1144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Debussche, A., Glatt-Holtz, N., Temam, R., Ziane, M.: Global existence and regularity for the 3d stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity 25(7), 2093 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dickey, R.W.: Stability theory for the damped Sine–Gordon equation. SIAM J. Appl. Math. 30(2), 248–262 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Molfetta, G., Krstlulovic, G., Brachet, M.: Self-truncation and scaling in euler-voigt-\(\alpha \) and related fluid models. arXiv preprint arXiv:1502.05544 (2015)

  17. Debussche, A., Odasso, C.: Ergodicity for a weakly damped stochastic non-linear Schrödinger equation. J. Evol. Equ. 5(3), 317–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

  19. Ewald, B., Petcu, M., Temam, R.: Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise. Anal. Appl. 5(2), 183–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, X.: Random attractor for a damped Sine–Gordon equation with white noise. Pac. J. Math. 216(1), 63–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Földes, J., Glatt-Holtz, N., Richards, G., Thomann, E.: Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing. J. Funct. Anal. 269(8), 2427–2504 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous camassa-holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14(1), 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fomin, S.W., Kornfel’d, I.P., Sinai, Y.G.: Teoria ergodyczna. Translated from the Russian by Jacek Jakubowski. Państwowe Wydawnictwo Naukowe (PWN), Warsaw (1987)

  24. Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension \(2\). Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Glatt-Holtz, N., Kukavica, I., Vicol, V., Ziane, M.: Existence and regularity of invariant measures for the three dimensional stochastic primitive equations. J. Math. Phys. 55(5), 051504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Glatt-Holtz, N., Temam, R.: Cauchy convergence schemes for some nonlinear partial differential equations. Appl. Anal. 90(1), 85–102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glatt-Holtz, N., Temam, R.: Pathwise solutions of the 2-d stochastic primitive equations. Appl. Math. Optim. 63(3), 401–433 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Glatt-Holtz, N., Temam, R., Wang, C.: Martingale and pathwise solutions to the stochastic Zakharov–Kuznetsov equation with multiplicative noise. arXiv preprint arXiv:1307.6803 (2013)

  29. Glatt-Holtz, N., Ziane, M.: The stochastic primitive equations in two space dimensions with multiplicative noise. Discret. Contin. Dyn. Syst. Ser. B 10(4), 801–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ghidaglia, J.-M., Temam, R.: Attractors for damped nonlinear hyperbolic equations. Journal de mathématiques pures et appliquées 66(3), 273–319 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Hairer, M.: Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Relat. Fields 124(3), 345–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. (2) 164(3), 993–1032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hairer, M., Mattingly, J.C.: Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36(6), 2050–2091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, M., Mattingly, J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic pdes. Electron. J. Probab. 16(23), 658–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hairer, M., Mattingly, J.C., Scheutzow, M.: Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Relat. Fields 149(1—-2), 223–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kallenberg, O.: Foundations of modern probability. In: Probability and its Applications, 2nd edn. (New York). Springer, New York (2002)

  37. Kobelkov, G.M.: Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9(4), 588–610 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Komorowski, T., Peszat, S., Szarek, T.: On ergodicity of some markov processes. Ann. Probab. 38(4), 1401–1443 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuksin, S., Shirikyan, A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221(2), 351–366 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kuksin, S., Shirikyan, A.: Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9) 81(6), 567–602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence. Number 194 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  42. Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3d Navier–Stokes–Voight equations. Chinese Ann. Math. Ser. B 30(6), 697–714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kovačič, Gregor, Wiggins, Stephen: Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped Sine–Gordon equation. Phys. D Nonlinear Phenom. 57(1), 185–225 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739–2753 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  46. Levi, M., Hoppensteadt, F.C., Miranker, W.L.: Dynamics of the josephson junction. Q. Appl. Math. 37(3), 167–198 (1978)

    Article  MathSciNet  Google Scholar 

  47. Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discret. Contin. Dyn. Syst. Ser. B 6(1), 111 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid voigt-regularization of three-dimensional hydrodynamic models. arXiv preprint arXiv:0910.3354 (2009)

  49. Lions, J.-L., Temam, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Lions, J.-L., Temam, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007–1053 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Lions, J.L., Temam, R., Wang, S.: Models for the coupled atmosphere and ocean. (CAO I, II). Comput. Mech. Adv. 1(1), 120 (1993)

    MathSciNet  MATH  Google Scholar 

  52. Mattingly, J.C.: Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230(3), 421–462 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Mattingly, J.C.: On recent progress for the stochastic Navier–Stokes equations. In Journées “Équations aux Dérivées Partielles”, pages Exp. No. XI, 52. Univ. Nantes, Nantes (2003)

  54. Marsden, J.E., Shkoller, S.: Global well-posedness for the lagrangian averaged Navier–Stokes (lans-\(\alpha \)) equations on bounded domains. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1784), 1449–1468 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Marsden, J.E., Shkoller, S.: The anisotropic lagrangian averaged euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 166(1), 27–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. 137. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  57. Oskolkov, A.P.: The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers. J. Math. Sci. 8(4), 427–455 (1977)

    Article  MATH  Google Scholar 

  58. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (2013)

    MATH  Google Scholar 

  59. Petcu, M., Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Special Volume on Computational Methods for the Atmosphere and the Oceans, volume 14 of Handbook of Numerical Analysis, pp. 577–750. Elsevier (2008)

  60. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  61. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Volume 68 of Applied Mathematical Sciences, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  62. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI (2001). Reprint of the 1984 edition

  63. Trenberth, K.E.: Climate System Modeling. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  64. Weinan, E., Mattingly, J.C., Sinai, Y.: Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Commun. Math. Phys. 224(1), 83–106 (2001). Dedicated to Joel L. Lebowitz

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Weinan, E., Liu, D.: Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Stat. Phys. 108(5–6):1125–1156 (2002). Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays

  66. Wang, G., Zhu, S.: On the dimension of the global attractor for the damped sine-Gordon equation. J. Math. Phys. 38(6), 3137–3141 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation under the Grant (NEGH) NSF-DMS-1313272. JCM was partially supported by the Simons Foundation. We would like to thank Peter Constantin, Michele Coti-Zelati, Juraj Földes and Vlad Vicol for helpful feedback. We would also like to express our appreciation to the Mathematical Sciences Research Institute (MSRI) as well as the Duke and Virginia Tech Math Departments where the majority of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Mattingly.

Additional information

Dedicated to David Ruelle and Yakov G. Sinai on the occasion of their 80th birthdays with thanks for all they have and will teach us.

Appendix: Existence of Invariant Measures by a Limiting Procedure

Appendix: Existence of Invariant Measures by a Limiting Procedure

We now present some absotract results which are used above to infer the existence of an invariant measure via an approximation procedure relying on invariant measures for a collection of regularized systems. It was used in Sect. 3.4.3 to prove the existence of an invariant measure.

Let \((H, \Vert \cdot \Vert _H)\), \((V, \Vert \cdot \Vert _V)\) be two separable Banach spaces. The associated Borel \(\sigma \)-algebras are denoted as \(\mathcal {B}(H)\) and \(\mathcal {B}(V)\) respectively. We suppose that V is continuously and compactly embedded in \(H\). Moreover we assume that there exists continuous functions \(\rho _n: H \rightarrow V\) for \(n \ge 1\) such that

$$\begin{aligned} \lim _{n \rightarrow \infty } \Vert \rho _n(u)\Vert _V = {\left\{ \begin{array}{ll} \Vert u\Vert _V &{} \text { for } u \in V\\ \infty &{} \text { for } u \in H \setminus V. \end{array}\right. } \end{aligned}$$

Notice that, under these circumstances, \(\mathcal {B}(V) \subset \mathcal {B}(H)\) and moreover that \(A \cap V\in \mathcal {B}(V)\) for any \(A \in \mathcal {B}(H)\). We can therefore extend any Borel measure \(\mu \) on V to a measure \(\mu _E\) on H by setting \(\mu _E(A) = \mu (A \cap V)\) and hence we identify \(Pr(V) \subset Pr(H)\). This natural extension will be made without further comment in what follows.

By appropriately restricting the domain of elements \(\phi \in C_b(H)\) to V we have that \(C_b(H) \subset C_b(V)\). Similarly \(\mathrm {Lip}(H) \subset \mathrm {Lip}(V)\), etc. Furthermore, under the given conditions on H and V, \(C_b(H) \cap \mathrm {Lip}(H)\) determines measures in Pr(V) namely if \(\int _V \phi \, d\mu = \int _V \phi \, d \nu \) for all \(\phi \in C_b(H) \cap \mathrm {Lip}(H)\) then \(\mu = \nu \).

On \(V\) we consider a Markov transition kernel P, which is assumed to be Feller in H, that is to say P maps \(C_b(H)\) to itself. We also suppose that \(\{P^\epsilon \}_{\epsilon > 0}\) is a sequence of Markov transition kernels (again defined on V) such that, for any \(\phi \in C_b(H) \cap \mathrm {Lip}(H)\), and \(R>0\),

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \sup _{u \in B_{R}(V)} | P^\epsilon \phi (u) - P\phi (u)| = 0, \end{aligned}$$
(4.1)

where \(B_R(V)\) is the ball of radius R in V.

Lemma 4.1

In the above setting, let \(\{\mu ^\epsilon \}_{\epsilon > 0}\) be a sequence of probability measures on \(V\). Assume that there is an increasing continuous function \(\psi :[0,\infty ) \rightarrow [0,\infty )\) with \(\psi (r) \rightarrow \infty \) as \(r\rightarrow \infty \) and a finite constant \(C_0 >0\) so that

$$\begin{aligned} \sup _{\epsilon > 0} \int \psi (\Vert u\Vert _{V}) d \mu ^\epsilon \le C_0. \end{aligned}$$
(4.2)

Then there exists a probability measure \(\mu \), supported on V, with \(\int \psi (\Vert u\Vert _{V}) d \mu (u) \le C_0\) such that (up to a subsequence) \(\mu ^\epsilon P^\epsilon \) converges weakly in \(H\) to \(\mu P\) that is, for all \(\phi \in C_b(H)\),

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \mu ^\epsilon P^\epsilon \phi = \mu P\phi \end{aligned}$$
(4.3)

Proof of Lemma 4.1

From our assumption we know that

$$\begin{aligned} \mu ^\epsilon (\psi (\Vert u\Vert _{V}) \ge R) \le C_0/\psi (R) \end{aligned}$$
(4.4)

for all \(\epsilon > 0\). We infer that the family of measures \(\{\mu ^\epsilon \}_{\epsilon >0}\) is tight on \(H\) and thus that there exists a measure \(\mu \) on \(H\) such that \(\mu ^{\epsilon _n}\) converges weakly in H to \(\mu \) for some decreasing subsequence \(\epsilon _n \rightarrow 0\). For \(k, m \ge 1\) define \(f_{k,m} \in C_b(H)\) as \(f_{k,m}(u) := \psi (\Vert \rho _m (u)\Vert _{V}) \wedge k\). Weak convergence in H implies that \(\int f_{k,m} d \mu ^{\epsilon _n} \rightarrow \int f_{k,m} d \mu \le C_0\) as \(n \rightarrow \infty \) for each fixed km. Fatou’s lemma then implies that

$$\begin{aligned} \int \psi (\Vert u\Vert _{V}) d\mu (u) \le \lim _{k, m \rightarrow \infty } \int f_{k,m}(u) d\mu (u) \le C_0 \end{aligned}$$

and in particular that \(\mu (V)=1\).

We now turn to demonstrate (4.3). Observe that, for any \(\phi \in C_b(H)\) and any \(\epsilon >0\),

$$\begin{aligned} \big | \mu ^{\epsilon } P^{\epsilon }\phi - \mu P\phi \big |&\le \left| \mu ^{\epsilon } P^{\epsilon }\phi - \mu ^{\epsilon } P\phi \right| + \left| \mu ^{\epsilon } P\phi \ - \mu P\phi \right| \end{aligned}$$
(4.5)

Taking \(\epsilon =\epsilon _n\), the first term is bounded as

$$\begin{aligned} \left| \mu ^{\epsilon _n} P^{\epsilon _n}\phi - \mu ^{\epsilon _n} P\phi \right|&\le \sup _{u \in B_{S}(V)}| P^{\epsilon _n} \phi (u)- P\phi (u) | + 2 \sup _{u} | \phi (u)| \, \mu ^{\epsilon _n} ( B_{S}(V)^c) \end{aligned}$$
(4.6)

for any \(S > 0\). Combining (4.5), (4.6) with (4.1), (4.4), using that \(\mu ^{\epsilon _n}\) converges weakly in \(H\) and that \( P^\epsilon \phi \in C_b(H)\) we infer (4.3), completing the proof. \(\square \)

This produces the following corollary.

Corollary 4.2

In the above setting, if in addition we assume that, for every \(\epsilon >0\), \(\mu ^\epsilon \) is an invariant measure for \(P^\epsilon \) then the limiting measure \(\mu \) is an invariant measure of P.

Proof

By the above result we may pick \(\epsilon _n \rightarrow 0\) such that \(\mu ^{\epsilon _n}\) and \(\mu ^{\epsilon _n} P^{\epsilon _n}\) converge weakly in \(H\) to \(\mu \) and \(\mu P\) respectively. However since \(\mu ^{\epsilon _n} P^{\epsilon _n}=\mu ^{\epsilon _n}\) we also have that \(\mu ^{\epsilon _n} P^{\epsilon _n}\) converges weakly in \(H\) to \(\mu \). Hence we conclude that \(\mu P=\mu \) which is means the \(\mu \) is an invariant measure for P. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glatt-Holtz, N., Mattingly, J.C. & Richards, G. On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations. J Stat Phys 166, 618–649 (2017). https://doi.org/10.1007/s10955-016-1605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1605-x

Keywords

Navigation