Skip to main content
Log in

On the Strong Forms of the Borel–Cantelli Lemma and Dynamical Systems with Polynomial Decay of Correlations

  • MATHEMATICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The strong forms of the Borel–Cantelli lemma are variants of the strong law of large numbers for sums of event indicators while the series of event probabilities diverges. These sums are centered at means and normalized by a certain function of means. In this paper, we derive new strong forms of the Borel–Cantelli lemma under wider restrictions on variations in the sum increments than has been done before. The strong forms are commonly used in analyzing the properties of dynamical systems. We apply our results to describe the properties of several measure-preserving expanding maps of [0, 1] with a fixed point at zero. Such results can also be proved in the case of analogous multidimensional maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. K. L. Chung and P. Erdős, “On the application of the Borel–Cantelli lemma,” Trans. Am. Math. Soc. 72, 179–186 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Erdős and A. Rényi, “On Cantor’s series with convergent 1/q,” Ann. Univ. Sci. Budapest Sect. Math. 2, 93–109 (1959).

    MathSciNet  MATH  Google Scholar 

  3. F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, N.J., 1964).

    Book  MATH  Google Scholar 

  4. T. F. Móri and G. J. Székely, “On the Erdős–Rényi generalization of the Borel–Cantelli lemma,” Stud. Sci. Math. Hung. 18, 173–182 (1983).

    MATH  Google Scholar 

  5. V. V. Petrov, “A note on the Borel–Cantelli lemma,” Stat. Probab. Lett. 58, 283–286 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. N. Frolov, “Bounds for probabilities of unions of events and the Borel–Cantelli lemma,” Stat. Probab. Lett. 82, 2189–2197 (2012). https://doi.org/10.1016/j.spl.2012.08.002

    Article  MathSciNet  MATH  Google Scholar 

  7. A. N. Frolov, “On lower and upper bounds for probabilities of unions and the Borel–Cantelli lemma,” Stud. Sci. Math. Hung. 52, 102–128 (2015). https://doi.org/10.1556/SScMath.52.2015.1.1304

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Schmidt, “Metrical theorems on fractional parts of sequences,” Trans. Am. Math. Soc. 110, 493–518 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Phillipp, “Some metrical theorems in number theory,” Pac. J. Math. 20, 109–127 (1967).

    Article  MathSciNet  Google Scholar 

  10. V. V. Petrov, “The growth of sums of indicators of events,” J. Math. Sci. 128, 2578–2580 (2005). https://doi.org/10.1007/s10958-005-0205-0

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Kim, “The dynamical Borel–Cantelli lemma for interval maps,” Discrete Contin. Dyn. Syst. 17, 891–900 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Gupta, M. Nicol, and W. Ott, “A Borel–Cantelli lemma for non-uniformly expanding dynamical systems,” Nonlinearity 23, 1991–2008 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Haydn, M. Nicol, T. Persson, and S. Vaienti, “A note on Borel–Cantelli lemmas for non-uniformly hyperbolic dynamical systems,” Ergodic Theory Dyn. Syst. 33, 475–498 (2013). https://doi.org/10.1017/S014338571100099X

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Luzia, “Borel–Cantelli lemma and its applications,” Trans. Am. Math. Soc. 366, 547–560 (2014). https://doi.org/10.1090/S0002-9947-2013-06028-X

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Gouëzel, “A Borel–Cantelli lemma for intermittent interval maps,” Nonlinearity 20, 1491–1497 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. N. Frolov, “On strong forms of the Borel–Cantelli lemma and intermittent interval maps,” J. Math. Anal. Appl. 504, 125425 (2021). https://doi.org/10.1016/j.jmaa.2021.125425

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Sarig, “Subexponential decay of correlations,” Invent. Math. 150, 629–653 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Gouëzel, “Sharp polynomial estimates for the decay of correlations,” Isr. J. Math. 139, 29–65 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Hu and S. Vaienti, “Lower bounds for the decay of correlations in non-uniformly expanding maps,” Ergodic Theory Dyn. Syst. 39, 1936–1970 (2019). https://doi.org/10.48550/arXiv.1307.0359

    Article  MathSciNet  MATH  Google Scholar 

  20. A. N. Frolov, “On the strong form of the Borel–Cantelli lemma,” Vestn. St Petersburg Univ.: Math. 55, 64–70 (2022). https://doi.org/10.1134/S1063454122010058

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGEMENTS

I cordially thank the anonymous reviewers for a number of valuable remarks that contributed to improving the quality of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Frolov.

Additional information

Translated by A. Shishulin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.N. On the Strong Forms of the Borel–Cantelli Lemma and Dynamical Systems with Polynomial Decay of Correlations. Vestnik St.Petersb. Univ.Math. 55, 419–425 (2022). https://doi.org/10.1134/S1063454122040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454122040057

Keywords:

Navigation