Skip to main content
Log in

The Modification of Dissolution Kinetics and Solubility of Lysozyme Crystals by Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Knowing about the dissolution kinetics and solubility is necessary for controlling crystallization separation process of lysozyme. In this study, the impact of four ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim]BF4, 1-butyl-3-methylimidazole chloride [C4mim]Cl, 1-butyl-3-methylimidazole bromide [C4mim]Br, and 1,3-dimethylimidazolium iodide [dmim]I, on the dissolution rate of lysozyme was determined in an aqueous solution at 20 ℃, pH 5.01, under 101.3 kPa. The results revealed that the dissolution rate of lysozyme increased with increasing concentrations of [C4mim]BF4 and [C4mim]Cl, while it remained stable with increasing concentrations of [C4mim]Br. In contrast, the dissolution rate gradually decreased with increasing concentrations of [dmim]I. This suggests that the interaction between lysozyme molecules is influenced by the ILs, leading to variations in the dissolution rates. Additionally, the effect of anions and cations on the equilibrium solubility was analyzed. The results indicated that the order of anionic and cationic effects on equilibrium solubility is as follows: BF4− < Cl < Br = [C4mim]+  < [dmim]+  < I. Furthermore, dissolution kinetic models were established, which could be used to predict the dissolution behavior of large molecules like lysozyme in ILs aqueous solution. These findings have significant implications for the design of crystallization process and optimization of parameters during lysozyme recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Seddon, V.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997)

    Article  CAS  Google Scholar 

  2. Welton, T.: Ionic liquids: A brief history. Biophys. Rev. 10, 691–706 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)

    Article  CAS  Google Scholar 

  4. Laresn, A.S., Holbrey, J.D., Tham, F.S., Reed, C.A.: Designing ionic liquids: imidazolium melts with inert carborane anions. JACS. 122, 7264–7272 (2000)

    Article  Google Scholar 

  5. Wilkes, J.S., Zaworotko, M.J.: Air and water stable 1-ethy-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun. 13, 965–967 (1992)

    Article  Google Scholar 

  6. Ventura, S.P.M., Silva, F.A.E., Quental, M.V., Mondal, D., Freire, M.G., Coutinh, J.A.P.: Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem. Rev. 117, 6984–7052 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, K., Liu, X.M., Dong, H.F., Zhang, X.P., Zhang, S.J.: Multiscale studies on ionic liquids. Chem. Rev. 117, 6636–6695 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. Ardakani, E.K., Kowsari, E., Ehsani, A., Ramakrishna, S.: Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: a comprehensive review. Microchem. J. 165, 106049 (2021)

    Article  CAS  Google Scholar 

  9. Kaur, G., Kumar, H., Singla, M.: Diverse applications of ionic liquids: a comprehensive review. J. Mol. Liq. 351, 118556 (2022)

    Article  CAS  Google Scholar 

  10. Zhang, Z.C., Xu, F., Zhang, Y.Q., Li, C.H., He, H.Y., Yang, Z.F., Li, Z.X.: A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chem. 22, 2534–2542 (2020)

    Article  CAS  Google Scholar 

  11. Cagliero, C., Bicchi, C.: Ionic liquids as gas chromatographic stationary phases: how can they change food and natural product analyses? Anal. Bioanal. Chem. 412, 17–25 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. Wu, J.S., Xie, P., Hao, W.B., Lu, D., Qi, Y., Mi, Y.L.: Ionic liquids as electrolytes in aluminum electrolysis. Front. Chem. 10, 1014893 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kitazawa, Y., Ueno, K., Watanabe, M.: Advanced materials based on polymers and ionic liquids. Chem. Rec. 18, 391–409 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Sohaib, Q., Muhammad, A., Younas, M., Rezakazemi, M.: Modeling precombustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Sep. Purif. Technol. 241, 116677 (2020)

    Article  CAS  Google Scholar 

  15. Ibrahim, F., Moniruzzaman, M., Yusup, S., Uemura, Y.: Dissolution of cellulose with ionic liquid in pressurized cell. J. Mol. Liq. 211, 370–372 (2015)

    Article  CAS  Google Scholar 

  16. Moniruzzaman, M., Goto, M.: Ionic liquids: future solvents and reagents for pharmaceuticals. J. Chem. Eng. Japan. 44, 1103310164–1103310164 (2011)

    Article  Google Scholar 

  17. Araki, S., Wakabayashi, R., Moniruzzaman, M., Kamiay, N., Goto, M.: Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. Med. Chem. Comm. 6, 2124–2128 (2015)

    Article  CAS  Google Scholar 

  18. Williams, H.D., Sahbaz, Y., Ford, L., Nguyem, T.H., Scammells, P.J., Porter, C.J.: Ionic liquids provide unique opportunities for oral drug delivery: optimization and in vivo evidence of utility. Chem, Comm. 14, 2124–2128 (2014)

    Google Scholar 

  19. Blake, C.F., Koenig, D.F., Mair, G.A., North, A.C., Phillips, D.C., Sarma, V.R.: Structure of hen egg-white lysozyme: a three-dimensional fourier synthesis at 2A resolution. Nature 206, 757–761 (1965)

    Article  CAS  PubMed  Google Scholar 

  20. Li, L., Zhao, J., Wang, L., Qiu, L., Song, L.: Genomic organization, polymorphisms and molecular evolution of the goose-type lysozyme gene from Zhikong scallop Chlamys farreri. Gene 513, 40–52 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Callewaert, L., Michiels, C.W.: Lysozymes in the animal kingdom. J. Biosci. 35, 127–160 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Wu, T., Jiang, Q., Dan, W., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D.: What is new in lysozyme research and its application in food industry? – A review. Food Chem. 274, 698–709 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Byme, N., Wang, L.M., Belieres, J.P., Angell, C.A.: Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. RSC. 26, 2714–2716 (2007)

    Google Scholar 

  24. Huang, J.L., Noss, M.E., Schmidt, K.M., Bunagan, M.R.: The effect of neat ionic liquid on the folding of short peptides. RSC. 28, 8007–8009 (2011)

    Google Scholar 

  25. Khorshidian, N., Khanniri, E., Koushki, M.R., Sohrabvandi, S., Yousefi, M.: An overview of antimicrobial activity of lysozyme and Its functionality in cheese. Front. Nutr. 9, 218–240 (2022)

    Article  Google Scholar 

  26. Magnuson, D.K., Bodley, J.W., Evans, D.F.: The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J. Solution Chem. 13, 583–587 (1984)

    Article  CAS  Google Scholar 

  27. Gong, J.H., Liang, C.Y., Majeed, Z., Tian, M.F., Luo, M., Li, C.Y.: Advances of imidazolium ionic liquids for the extraction of phytochemicals from plants. Speration. 151, 151–180 (2023)

    Article  Google Scholar 

  28. Alsenz, J., Kansy, M.: High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev. 59, 546–567 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Cheng-yao, H.U., Pei, H.: Recent research and development on determination of solid solubility. Chin. J. Pharm. Anal. 30, 761–766 (2010)

    Google Scholar 

  30. Paul, A., Mandal, P.K., Samanta, A.: On the optical properties of the imidazolium ionic liquids. J. Phys. Chem. B 109, 9148–9153 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Stalcam, W., Morgan, J.: Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters. Science Press, Beijing (1987)

    Google Scholar 

  32. International Business Machines Corporation. (2017a). IBM SPSS complex samples 25. Retrieved from https://www.ibm.com/docs/en/SSLVMB_25.0.0/pdf/zh/CN/IBM_SPSS_Statistics_Core_System_User_Guide.pdf

  33. Zhang, Y., Furyk, S., Bergbreiter, D.E., Cremer, P.S.: Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Yu, X.X., Tian, N.N., Huang, F., Huang, X., Liu, C.L., Gao, S., Yang, Z., Wu, Y.N.: Evaluating the role of ionic liquids (ILs) in the crystallization of lysozyme. J. Mol. Liq. 296, 1–7 (2019)

    Article  Google Scholar 

  35. Wang, Z.Z., Liu, T.K., Lu, C., Dang, L.P.: Manipulating crystallization in lysozyme and supramolecular self-arrangement in solution using ionic liquids. CrystEngComm 20, 2284–2291 (2018)

    Article  CAS  Google Scholar 

  36. Florin, E., Kjellander, R., Eriksson, J.C.: Salt effects on the cloud point of the poly (ethylene oxide)+ water system. J. Chem. Soc. 80, 2889–2910 (1984)

    CAS  Google Scholar 

  37. Patel, A.D., Desai, M.A.: Progress in the field of hydrotropy: mechanism, applications and green concepts. Rev. Chem. Eng. 39, 601–630 (2023)

    Article  CAS  Google Scholar 

  38. Neuberg, C.: Zur Erklärung der Hydrotropie. Biochem. Z. 76, 107–176 (1916)

    CAS  Google Scholar 

  39. Eastoe, J., Hatzopoulos, M.H., Dowding, P.J.: Action of hydrotropes and alkyl-hydrotropes. Soft Matter 7, 5917–5925 (2011)

    Article  CAS  Google Scholar 

  40. Cláudio, A.F.M., Neves, M.C., Shimizu, K., Lopes, J.N., Freire, M.G., Coutinho, J.A.P.: The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chem. 17, 3948–3963 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abranches, D.O., Benfica, J., Soares, B.P., Ferreira, A.M., Sintra, T.E., Shimizu, S., Coutinho, J.A.P.: The impact of the counterion in the performance of ionic hydrotropes. Chem. Commun. 57, 2951–2954 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (21978206) and Tianjin Health Research Project (ZC20112).

Author information

Authors and Affiliations

Authors

Contributions

XZ contributed to conceptualization, methodology, analysis, investigation, writing – original draft, and writing-review & editing. CW contributed to writing-review & modifying and analysis. NL contributed to conceptualization, writing-review & editing, and visualization. ZW contributed to conceptualization, writing-review & editing, resources, supervision, and project administration.

Corresponding author

Correspondence to Zhanzhong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wei, C., Li, N. et al. The Modification of Dissolution Kinetics and Solubility of Lysozyme Crystals by Ionic Liquids. J Solution Chem (2024). https://doi.org/10.1007/s10953-023-01344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-023-01344-6

Keywords

Navigation