Skip to main content
Log in

Solid–Liquid Equilibria for the Binary Systems Naphthalene or Biphenyl + 1-Tetradecanol or + 1-Hexadecanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A differential scanning calorimetric technique has been used to obtain solid–liquid equilibrium temperatures for the mixtures naphthalene or biphenyl + 1-tetradecanol, or + 1-hexadecanol. All the systems show a simple eutectic point, whose final composition was determined by means of the Tamman’s plots using the needed values of the eutectic heat and of the heat of melting, which are also reported. DISQUAC interaction parameters for the OH/aromatic contacts in the selected systems are given. The present experimental SLE phase diagrams are similarly described by DISQUAC and UNIFAC (Dortmund) models. However, the comparison of DISQUAC and UNIFAC results for systems involving naphthalene and shorter 1-alkanols (methanol + 1-octanol) reveals that the temperature dependence of the interaction parameters is more suitable in DISQUAC. The systems are also investigated in terms of the concentration-concentration structure factor. It is shown that the positive deviations from the Raoult’s law of the studied solutions become weaker when the homocoordination decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Farahani, B.V., Rajabi, F.H., Hosseindoust, B., Zenooz, N.: DSC study of solid–liquid equilibria for energetic binary mixtures of methylnitramine with 2,4-dinitro-2,4-diazapentane and 2,4-dinitro-2,4-diazahexane. J. Phase Equilib. Diffus. 31, 536–541 (2010)

    Article  CAS  Google Scholar 

  2. Ulrich, J., Bülau, H.C.: Melt crystallization. In: Myerson, A.S. (ed.) Handbook of Industrial Crystallization, pp. 161–179. Butterworth-Heinemann, Oxford (2002)

    Chapter  Google Scholar 

  3. Ahlers, J., Lohmann, J., Gmehling, J.: Binary solid–liquid equilibria of organic systems containing different amides and sulfolane. J. Chem. Eng. Data 44, 727–730 (1999)

    Article  CAS  Google Scholar 

  4. Wittig, R., Constantinescu, D., Gmehling, J.: Binary solid–liquid equilibria of organic systems containing-caprolactone. J. Chem. Eng. Data 46, 1490–1493 (2001)

    Article  CAS  Google Scholar 

  5. Sarbu, I., Sebarchievici, C.A.: Comprehensive review of thermal energy storage. Sustainability 10, 191 (2018)

    Article  Google Scholar 

  6. Fallahi, A., Guldentops, G., Tao, M., Granados-Focil, S., Van Dessel, S.: Review on solid–solid phase change materials for thermal energy storage: molecular structure and thermal properties. Appl. Therm. Eng. 127, 1427–1441 (2017)

    Article  Google Scholar 

  7. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (2003). https://doi.org/10.1039/b210714g

    Article  Google Scholar 

  9. Foreman, M.R.S.: Progress towards a process for the recycling of nickel metal hydride electric cells using a deep eutectic solvent. Cogent Chem. 2, 1139289–1139300 (2016)

    Article  Google Scholar 

  10. Łukomska, A., Wiśniewska, A., Dąbrowski, Z., Kolasa, D., Luchcińska, S., Lach, J., Wróbel, K.: Recovery of zinc and manganese from “black mass” of waste Zn–MnO2 alkaline batteries by solvent extraction technique with ionic liquids, DES and organophosphorous-based acids. J. Mol. Liq. 338, 116590 (2021)

    Article  Google Scholar 

  11. Domanska, U.: Solubility and hydrogen bonding. Part VII. Synergic effect of solubility of naphthalene in mixed solvents. Polish. J. Chem. 55, 1715–1720 (1981)

    CAS  Google Scholar 

  12. Ward, H.L.: The solubility relations of naphthalene. J. Phys. Chem. 30, 1316–1333 (1926)

    Article  CAS  Google Scholar 

  13. Boudouh, I., González, J.A., Djemani, I., Barkat, D.: Solid-liquid equilibria of eicosane, tetracosane, or biphenyl + 1-octadecanol, or + 1-eicosanol mixtures. Fluid Phase Equilib. 442, 28–37 (2017)

    Article  CAS  Google Scholar 

  14. Hawes, D.W., Feldman, D., Banu, D.: Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)

    Article  Google Scholar 

  15. Burley, S.K., Petsko, G.A.: Weakly polar interactions in proteins. Adv. Protein Chem. 39, 125–189 (1988)

    Article  CAS  PubMed  Google Scholar 

  16. Cabaleiro, D., Gracia-Fernández, C., Lugo, L.: (Solid–liquid) phase equilibria and heat capacity of (diphenyl ether + biphenyl) mixtures used as thermal energy storage materials. J. Chem. Thermodyn. 74, 43–50 (2014)

    Article  CAS  Google Scholar 

  17. Cabaleiro, D., Pastoriza-Gallego, M.J., Piñeiro, M.M., Legido, J.L., Lugo, L.: Thermophysical properties of (diphenyl ether + biphenyl) mixtures for their use as heat transfer fluids. J. Chem. Thermodyn. 50, 80–88 (2012)

    Article  CAS  Google Scholar 

  18. Demirbas, A.: Asphaltene yields from five types of fuels via different methods. Energy Convers. Manag. 43, 1091–1097 (2002)

    Article  CAS  Google Scholar 

  19. Silva, S.M.C., Rajagopal, K.: Steady state size distribution of asphaltenes by flocculation from toluene-n-heptane mixtures. Petrol. Sci. Technol. 22, 1073–1085 (2004)

    Article  Google Scholar 

  20. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  21. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  ADS  CAS  Google Scholar 

  22. Weidlich, U., Gmehling, J.: A modified UNIFAC model. 1. Prediction of VLE, HE and γ. Ind. Eng. Chem. Res. 26, 1372–1381 (1987)

    Article  CAS  Google Scholar 

  23. Kehiaian, H.V.: Group contribution methods for liquid mixtures: a critical review. Fluid Phase Equilib. 13, 243–252 (1983)

    Article  CAS  Google Scholar 

  24. González, J.A., García de la Fuente, I., Cobos, J.C.: Correlation and prediction of excess molar enthalpies using DISQUAC. In: Wilhelm, E., Letcher, T.M. (eds.) Enthalpy and Internal Energy Liquids, Solutions and Vapours. Royal Society of Chemistry, Croydon (2017)

    Google Scholar 

  25. Gmehling, J., Li, J., Schiller, M.: A modified UNIFAC model, 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32, 178–193 (1993)

    Article  CAS  Google Scholar 

  26. Gonzalez, J.A., Zawadzki, M., Domanska, U.: Thermodynamics of mixtures containing polycyclic aromatic hydrocarbons. J. Mol. Liq. 143, 134–140 (2008)

    Article  CAS  Google Scholar 

  27. Domanska, U., González, J.A.: Solid–liquid equilibria for systems containing long-chain 1-alkanols. I. Experimental data for 1-dodecanol, 1-tetradecanol, 1-hexadecanol, 1-octadecanol or 1-icosanol + benzene, or toluene mixtures. Characterization in terms of DISQUAC. Fluid Phase Equilib. 119, 131–151 (1996)

    Article  CAS  Google Scholar 

  28. Cobos, J.C.: An exact quasi-chemical equation for excess heat capacity with W-shaped concentration dependence. Fluid Phase Equilib. 133, 105–127 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Trejo, L.M., Costas, M., Patterson, D.: Effect of molecular size on the W-shaped excess heat capacities: oxaalkane–alkane systems. J. Chem. Soc. Faraday Trans. 87, 3001–3008 (1991)

    Article  CAS  Google Scholar 

  30. CIAAW, Atomic weights of the elements 2015, ciaaw.org/atomic-weights.htm (2015).

  31. Stolen, S., Gronvold, F.: Critical assessment of the enthalpy of fusion of metals used as enthalpy standards at moderate to high temperatures. Thermochim. Acta 327, 1–32 (1999)

    Article  CAS  Google Scholar 

  32. Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6, 477–487 (1974)

    Article  CAS  Google Scholar 

  33. Metivaud, V., Lefevre, A., Ventola, L., Negrier, P., Moreno, E., Calvet, T., Mondieig, D., Cuevas-Diarte, M.A.: Hexadecane (C16H34) + 1-hexadecanol (C16H33OH) binary system: crystal structures of the components and experimental phase diagram. Application to thermal protection of liquids. Chem. Mater. 17, 3302–3310 (2005)

    Article  CAS  Google Scholar 

  34. Kuchhal, Y.K., Shukla, R.N., Biswas, A.B.: Differential thermal-analysis of n-long chain alcohols and corresponding alkoxy ethanols. Thermochim. Acta 31, 61–70 (1979)

    Article  CAS  Google Scholar 

  35. Berchiesi, G.: Data mixtures. Int. DATA Ser. Selec. Ser. A 2, 95–100 (1985)

    Google Scholar 

  36. Prausnitz, J.M., Lichtenthaler, R.N.: Termodinámica Molecular de los Equilibrios Entre Fases. Prentice-Hall, Madrid (2000)

    Google Scholar 

  37. Boudouh, I., Hafsaoui, S.L., Mahmoud, R., Barkat, D.: Measurement and prediction of solid-phase equilibria for systems containing biphenyl in binary solution with long-chain n-alkanes. J. Therm. Anal. Calorim. 125, 793–801 (2016)

    Article  CAS  Google Scholar 

  38. Costa, M.C., Rolemberg, M.-P., Meirelles, A.J.A., Coutinho, J.P.A., Krähenbühl, M.A.: The solid–liquid phase diagrams of binary mixtures of even saturated fatty acids differeing by six carbon atoms. Thermochim. Acta 496, 30–37 (2009)

    Article  CAS  Google Scholar 

  39. Inoue, T., Hisatsugu, Y., Ishikawa, R., Suzuki, M.: Solid–liquid phase behaviour of binary fatty acid mixtures: 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chem. Phys. Lipids 127, 161–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. Grzyll, L.R., Ramos, C., Back, D.D.: Density, viscosity, and surface tension of liquid quinoline, naphthalene, biphenyl, decafluorobiphenyl, and 1,2-diphenylbenzene from 300 to 400 °C. J. Chem. Eng. Data 41, 446–450 (1996)

    Article  CAS  Google Scholar 

  41. Liew, K.Y., Seng, C.E., Ng, B.H.: Molar volumes of n-alcohols from 15 to 80 °C. J. Solution Chem. 21, 1177–1183 (1992)

    Article  CAS  Google Scholar 

  42. Guggenheim, E.A.: Mixtures. Oxford University Press, Oxford (1952)

    Google Scholar 

  43. Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York (1968)

    Google Scholar 

  44. Kehiaian, H.V., Grolier, J.-P.E., Benson, G.C.: Thermodynamics of organic mixtures. A generalized quasichemical model theory in terms of group surface interactions. J. Chim. Phys. 75, 1031–1048 (1978)

    Article  CAS  Google Scholar 

  45. González, J.A., García de la Fuente, I., Cobos, J.C., Casanova, C., Ait-Kaci, A.: Application of the zeroth approximation of the DISQUAC model to cyclohexane + n-alkane mixtures using different combinatorial entropy terms. Fluid Phase Equilib. 112, 63–87 (1995)

    Article  Google Scholar 

  46. González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with Dortmund UNIFAC and ERAS results. Fluid Phase Equilib. 168, 31–58 (2000)

    Article  Google Scholar 

  47. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonidel liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    Article  ADS  CAS  Google Scholar 

  48. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)

    Google Scholar 

  49. Boudouh, I., Djemai, I., González, J.A., Barkat, D.: Solid–liquid equilibria of biphenyl binary systems. J. Mol. Liq. 216, 764–770 (2016)

    Article  CAS  Google Scholar 

  50. González, J.A., García de la Fuente, I., Cobos, J.C., Casanova, C.: A characterization of the aliphatic/hydroxyl interactions using a group contribution model (DISQUAC). Ber. Bunsenges. Phys. Chem. 95, 1658–1668 (1991)

    Article  Google Scholar 

  51. González, J.A., García de la Fuente, I., Cobos, J.C., Casanova, C., Domanska, U.: DISQUAC application to SLE of binary mixtures containing long chain 1-alkanols (1-tetradecanol, 1-hexadecanol, 1-octadecanol, or 1-eicosanol) and n-alkanes (C8–C16). Ber. Bunsenges. Phys. Chem. 98, 955–959 (1994)

    Article  Google Scholar 

  52. Kang, J.W., Diky, V., Frenkel, M.: New modified UNIFAC parameters using critically evaluated phase equilibrium data. Fluid Phase Equilib. 388, 128–141 (2015)

    Article  CAS  Google Scholar 

  53. Ott, J.B., Holscher, I.F., Schneider, G.M.: (Liquid + liquid) phase equilibria in (methanol + heptane) and (methanol + octane) at pressures from 0.1 to 150 MPa. J. Chem. Thermodyn. 18, 815–826 (1986)

    Article  CAS  Google Scholar 

  54. Aoulmi, A., Bouroukba, M., Solimando, R., Rogalski, M.: Thermodynamics of mixtures formed by polycyclic aromatic hydrocarbons with long chain alkanes. Fluid Phase Equilib. 110, 283–297 (1995)

    Article  CAS  Google Scholar 

  55. Coon, J.E., Sediawan, W.B., Auwaerter, J.E., McLaughlin, E.: Solubilities of families of heterocyclic polynuclear aromatics in organic solvents and their mixtures. J. Solution Chem. 17, 519–534 (1988)

    Article  CAS  Google Scholar 

  56. Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Steele, W.V.: The thermodynamic properties of biphenyl. J. Chem. Thermodyn. 21, 1307–1331 (1989)

    Article  CAS  Google Scholar 

  57. Leys, J., Losada-Pérez, P., Slenders, E., Glorieux, C., Thoen, J.: Investigation of the melting behaviour of the reference materials biphenyl and phenyl salicytate by a new type adiabatic scanning calorimeter. Thermochim. Acta 582, 68–76 (2014)

    Article  CAS  Google Scholar 

  58. Sharma, K.P., Rai, R.N.: Synthesis and characterization of novel binary organic monotectic and eutectic alloys. Thermochim. Acta 535, 66–70 (2012)

    Article  CAS  Google Scholar 

  59. Chirico, R.D., Knipmeyer, S.E., Steele, W.V.: Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5 K and 440 K. J. Chem. Thermodyn. 34, 1874–1884 (2002)

    Google Scholar 

  60. Khimeche, K., Dahmani, A.: Solid–liquid equilibria of naphthalene + alkanediamine mixtures. J. Chem. Eng. Data 51, 383–385 (2006)

    Article  Google Scholar 

  61. Acree, W.E.: Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation. Thermochim Acta 189, 37–56 (1991)

    Article  CAS  Google Scholar 

  62. Sharma, B.L., Gupta, S., Tandon, S., Kant, R.: Physico-mechanical properties of naphthalene–acenaphthene eutectic system by different modes of solidification. Mater. Chem. Phys. 111, 423–430 (2008)

    Article  CAS  Google Scholar 

  63. Maximo, G.J., Carareto, N.D.D., Costa, M.C., Dos, S.: On the solid–liquid equilibrium of binary mixtures of fatty alcohols and fatty acids. Fluid Phase Equilib. 366, 88–98 (2014)

    Article  CAS  Google Scholar 

  64. Tian, T., Song, J., Niu, L., Feng, R.: Preparation and properties of 1-tetradecanol/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol gelatinous form-stable phase change materials. Thermochim. Acta 554, 54–58 (2013)

    Article  CAS  Google Scholar 

  65. Zuo, J., Li, W., Weng, L.: Thermal properties of lauric acid/1-tetradecanol binary system for energy storage. App. Thermal Eng. 31, 1352–1355 (2011)

    Article  CAS  Google Scholar 

  66. Davies, M., Kybett, B.: Sublimation and vaporization heats of long-chain alcohols. Trans. Faraday Soc. 61, 1608–1617 (1965)

    Article  CAS  Google Scholar 

  67. Xing, J., Tan, Z.-C., Shi, Q., Tong, B., Wang, S.-X., Li, Y.-S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Themal Anal. Calorim. 92, 375–380 (2008)

    Article  CAS  Google Scholar 

  68. Wiśniewska, B., Gregorowicz, J., Malanowski, S.: Development of a vapour–liquid equilibrium apparatus to work at pressures up to 3 MPa. Fluid Phase Equilib. 86, 173–186 (1993)

    Article  Google Scholar 

  69. Lee, C.H., Holder, G.D.: Vapor–liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene. J. Chem. Eng. Data 38, 320–323 (1993)

    Article  CAS  Google Scholar 

  70. Butcher, K.L., Medani, M.S.: Thermodynamic properties of methanol–benzene mixtures at elevated temperatures. J. Appl. Chem. 18, 100–107 (1968)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Consejería de Educación de Castilla y León, under Project VA100G19 (Apoyo a GIR, BDNS: 425389.

Author information

Authors and Affiliations

Authors

Contributions

L.F. Sanz and F. Hevia performed the experimental work. Data correlation was conducted by J.A. González and L.F. Sanz. J.A. González, I. García de la Fuente and J.C. Cobos wrote the draft of the manuscript. F. Hevia prepared the Figures. L.F. Sanz and J.A. González wrote the final version of the manuscript, reviewed by all authors.

Corresponding author

Correspondence to Juan Antonio González.

Ethics declarations

Conflict of interest

Authors declare no competing financial interest, or of any type.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, L.F., González, J.A., Hevia, F. et al. Solid–Liquid Equilibria for the Binary Systems Naphthalene or Biphenyl + 1-Tetradecanol or + 1-Hexadecanol. J Solution Chem 53, 160–181 (2024). https://doi.org/10.1007/s10953-023-01310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01310-2

Keywords

Navigation