Skip to main content
Log in

Solid–Liquid Metastable Equilibria for Solar Evaporation of Brines and Solubility Determination: A Critical Discussion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Within the last two decades, a large number of articles were published that report, as the authors claim, ‘metastable phase equilibria’, or ‘metastable solubilities’. The main objective of these studies was to carry out experiments under conditions closely meeting those in solar evaporation ponds or industrial evaporation–crystallization processes. Occasionally, such studies were subject to controversial discussion and criticism and the question was raised whether metastable equilibrium data are worth being published at all. This paper provides a critical discussion of such evaporation experiments. The thermodynamic background of stable and metastable solubility and typical experimental difficulties in solubility determinations are discussed in detail. We also demonstrate that the knowledge of metastable equilibria is very useful in different research areas such as geochemistry or industrial application of solubility equilibria. Finally, it is shown that so-called ‘isothermal evaporation method’ used in the above-mentioned studies does not yield stable or metastable solubilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deng, T., Li, D., Wang, S.: Metastable phase equilibrium in the aqueous ternary system (KCl–CaCl2–H2O) at (288.15 and 308.15) K. J. Chem. Eng. Data 53, 1007–1011 (2008)

    Article  CAS  Google Scholar 

  2. Deng, T.: Stable and metastable phase equilibria in the salt–water systems. In: Mastai, Y. (ed.) Advances in Crystallization Processes, pp. 399–430. InTech, www.intechopen.com (2012)

  3. Deng, T., Yu, X., Li, D.: Metastable phase equilibrium in the aqueous ternary system K2SO4 + MgSO4 + H2O at (288.15 and 308.15) K. J. Solution Chem. 38, 27–34 (2009)

    Article  CAS  Google Scholar 

  4. Deng, T., Wang, S.: Metastable phase equilibrium in the reciprocal quaternary system (NaCl + MgCl2 + Na2SO4 + MgSO4 + H2O) at 273.15 K. J. Chem. Eng. Data 53, 2723–2727 (2008)

    Article  CAS  Google Scholar 

  5. van’t Hoff, J.H.: Untersuchung über die Bildungsverhältnisse der ozeanischen Salzablagerungen insbesondere des Stassfurter Salzlagers. Akademische Verlagsgesellschaft mbH, Leipzig (1912)

  6. Kurnakov, N.S., Nikolaev, V.I.: Solar evaporation of seawater and lake brines (in Russian). Izv. Sekt. Fiz.-Khim. Anal., Akad. Nauk SSSR 10, 333–366 (1938)

    CAS  Google Scholar 

  7. Danilov, V.P.: Studies of Kurnakov’s school of thought on the chemistry and technology of salts. Russ. J. Inorg. Chem. 55, 1793–1802 (2010)

    Article  CAS  Google Scholar 

  8. Valyashko, M.G.: Die wichtigsten geochemischen Parameter für die Bildung der Kalisalzlagerstätten. Freiberg. Forschungsh. A 123, 197–236 (1958)

    Google Scholar 

  9. Autenrieth, H.: Die stabilen und metastabilen Gleichgewichte des reziproken Salzpaares 2KCl + MgSO4 = K2SO4 + MgCl2 ohne und mit NaCl als Bodenkörper, sowie ihre Anwendung in der Praxis. Kali Steinsalz 1(7), 3–22 (1954)

    Google Scholar 

  10. Autenrieth, H.: Untersuchungen im Sechs-Komponenten-System K+, Na+, Mg2+, Ca2+, SO 2−4 (Cl), H2O mit Schlussfolgerungen für die Verarbeitung der Kalisalze. Kali Steinsalz 2(6), 181–200 (1958)

    CAS  Google Scholar 

  11. Authenrieth, H.: Über das Zustandekommen und die Bedeutung metastabiler Lösungsgleichgewichte bei der Verarbeitung von Kalirohsalzen. Kali Steinsalz 5, 158–165 (1969)

    Google Scholar 

  12. Autenrieth, H., Braune, G.: Das Sechskomponentensystem K+, Na+, Mg2+, Ca2+, SO 2−4 , (Cl−), H2O bei 90 °C und seine Anwendung auf Schlammprobleme der Kalirohsalzverarbeitung. Kali Steinsalz 2, 395–405 (1959)

    CAS  Google Scholar 

  13. Autenrieth, H., Braune, G.: Die Lösungsgleichgewichte des reziproken Salzpaares 2NaCl + MgSO4 + H2O bei Sättigung an NaCl unter besonderer Berücksichtigung des metastabilen Bereichs. Kali Steinsalz 3, 15–30 (1960)

    CAS  Google Scholar 

  14. Bian, S., Li, D., Gao, D., Peng, J., Dong, Y., Li, W.: Hydrometallurgical processing of lithium, potassium, and boron for the comprehensive utilization of Da Qaidam lake brine via natural evaporation and freezing. Hydrometallurgy 173, 80–83 (2017)

    Article  CAS  Google Scholar 

  15. Braitsch, O.: Salt Deposits: Their Origin and Composition. Springer, New York (1971)

    Book  Google Scholar 

  16. Gamsjäger, H., Lorimer, P.W., Scharlin, P., Shaw, D.G.: Glossary of terms related to solubility. Pure Appl. Chem. 80, 233–276 (2008)

    Article  CAS  Google Scholar 

  17. Steiger, M., Asmussen, S.: Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim. Cosmochim. Acta 72, 4291–4306 (2008)

    Article  CAS  Google Scholar 

  18. Loewel, H.: Observations sur la sursaturation des dissolutions salines. Deuxieme Memoire. Ann. Chim. Phys. 33, 334–390 (1851)

    Google Scholar 

  19. Eddy, R.D., Menzies, A.W.C.: The solubilities of certain inorganic compounds in ordinary water and in deuterium water. J. Phys. Chem. 44, 207–235 (1940)

    Article  CAS  Google Scholar 

  20. Hartley, H., Mouat, B., Hutchinson, G.A.: The spontaneous crystallisation of sodium sulphate solutions. J. Chem. Soc. 93, 825–833 (1908)

    Article  Google Scholar 

  21. Grossi, C.M., Esbert, R.M., Suárez del Rio, L.M., Montato, M., Laurenzi-Tabasso, M.: Acoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud. Conserv. 42, 115–125 (1997)

    CAS  Google Scholar 

  22. Rodriguez-Navarro, C., Doehne, E., Sebastian, E.: How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement Concrete Res. 30, 1527–1534 (2000)

    Article  CAS  Google Scholar 

  23. Linnow, K., Zeunert, A., Steiger, M.: Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature controlled X-ray diffraction. Anal. Chem. 78, 4683–4689 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Shahidzadeh-Bonn, N., Rafaï, S., Bonn, D., Wegdam, G.: Salt crystallization during evaporation: impact of interfacial properties. Langmuir 24, 8599–8605 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Espinosa-Marzal, R.M., Scherer, G.W.: Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 69, 2657–2669 (2013)

    Article  Google Scholar 

  26. Linnow, K., Steiger, M., Lemster, C., De Clercq, H., Jovanović, M.: In-situ Raman observation of the crystallization in NaNO3–Na2SO4–H2O solution droplets. Environ. Earth Sci. 69, 1609–1620 (2013)

    Article  CAS  Google Scholar 

  27. Lindström, N., Talreja, T., Linnow, K., Stahlbuhk, A., Steiger, M.: Crystallization behavior of Na2SO4–MgSO4 salt mixtures in sandstone and comparison to single salt behavior. Appl. Geochem. 69, 50–70 (2016)

    Article  CAS  Google Scholar 

  28. Cohen-Adad, R., Cohen-Adad, M.-T.: Solubility of solids in liquids. In: Hefter, G.T., Tomkins, P.T.G. (eds.) The Experimental Determination of Solubilities, pp. 259–314. Wiley, Chichester (2003)

    Google Scholar 

  29. Gamsjäger, E., Königsberger, E.: Solubility of sparingly soluble ionic solids in liquids. In: Hefter, G.T., Tomkins, P.T.G. (eds.) The Experimental Determination of Solubilities, pp. 315–358. Wiley, Chichester (2003)

    Google Scholar 

  30. Pannach, M., Bette, S., Freyer, D.: Solubility equilibria in the system Mg(OH)2–MgCl2–H2O from 298 to 393 K. J. Chem. Eng. Data 62, 1384–1396 (2017)

    Article  CAS  Google Scholar 

  31. Gamsjäger, H., Preis, W., Wallner, H.: Solid-solute equilibria in aqueous solutions XIV. Thermodynamic analysis of the solubility of hellyerite in water. Monatsh. Chem. 132, 411–415 (2001)

    Article  Google Scholar 

  32. Gamsjäger, H., Gajda, T., Sangster, J., Saxena, S.K., Voigt, W.: Chemical thermodynamics of tin. In: Perrone, J. (ed.) Chemical Thermodynamics, pp. 148–152. OECD–NEA Data Bank, Issy-les-Moulineaux (2012)

    Google Scholar 

  33. Voigt, W.: What we know and still not know about oceanic salts. Pure Appl. Chem. 87, 1099–1126 (2015)

    Article  CAS  Google Scholar 

  34. Steiger, M., Linnow, K., Ehrhardt, D., Rohde, M.: Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl–SO 2−4 –H2O systems with implications for Mars. Geochim. Cosmochim. Acta 75, 3600–3626 (2011)

    Article  CAS  Google Scholar 

  35. Ziegenbalg, G.: Stabile und metastabile fest-flüssig-Phasengleichgewichte des Systems K+, Mg2+/Cl, SO 2−4 //H2O unter besonderer Berücksichtigung der Bildungsbedingungen von Kieserit im Temperaturbereich von 90–140 °C. Dissertation, TU Bergakademie Freiberg (1990)

  36. Li, H., Zeng, D., Yao, Y., Yin, X., Li, D., Han, H., Zhou, H.: Solubility phase diagram of the quaternary system Li+, Mg2+//Cl, SO 2−4 –H2O at 298.15 K: experimental redetermination and model simulation. Ind. Eng. Chem. Res. 53, 7579–7590 (2014)

    Article  CAS  Google Scholar 

  37. Freyer, D., Voigt, W.: Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh. Chem. 134, 693–719 (2003)

    Article  CAS  Google Scholar 

  38. Wollmann, G., Voigt, W.: Solid–liquid phase equilibria in the system K2SO4–MnSO4–H2O at 298 K and 313 K. Fluid Phase Equilib. 291, 76–80 (2010)

    Article  CAS  Google Scholar 

  39. De Visscher, A., Vanderdeelen, J., Königsberger, E., Churagulov, B.R., Ichikuni, M., Tsurumi, M.: IUPAC-NIST solubility data series. 95. Alkaline earth carbonates in aqueous systems. Part 2. Ca. J. Phys. Chem. Ref. Data 41, 023105 (2012)

    Article  CAS  Google Scholar 

  40. Bénézeth, P., Saldi, G.D., Dandurand, J.-L., Schott, J.: Experimental determination of the solubility product of magnesite at 50 to 200 C. Chem. Geol. 286, 21–31 (2011)

    Article  CAS  Google Scholar 

  41. Sohr, J., Schmidt, H., Voigt, W.: Higher hydrates of lithium chloride, lithium bromide and lithium iodide. Acta Cryst. C 74, 194–202 (2018)

    Article  CAS  Google Scholar 

  42. Hennings, E., Heinz, J., Schmidt, H., Voigt, W.: Freezing and hydrate formation in aqueous sodium perchlorate solutions. Z. Anorg. Allg. Chem. 639, 922–927 (2013)

    Article  CAS  Google Scholar 

  43. Hennings, E., Schmidt, H., Voigt, W.: Crystal structures of hydrates of simple inorganic salts. I. Water-rich magnesium halide hydrates MgCl2·8H2O, MgCl2·12H2O, MgBr2·6H2O, MgBr2·9H2O, MgI2·8H2O and MgI2·9H2O. Acta Cryst. C 69, 1292–1300 (2013)

    Article  CAS  Google Scholar 

  44. Peuschel, G.: Weiterentwicklung der Heißlöseverfahren durch Anwendung von Lösungsgleichgewichten. Kali Steinsalz 9, 296–303 (1986)

    CAS  Google Scholar 

  45. Harvie, C.E., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 25. Geochim. Cosmochim. Acta 44, 981–997 (1980)

    Article  CAS  Google Scholar 

  46. Marion, G.M.: A molal-based model for strong acid chemistry at low temperatures (< 200 to 298 K). Geochim. Cosmochim. Acta 66, 2499–2516 (2002)

    Article  CAS  Google Scholar 

  47. Steiger, M.: The geochemistry of nitrate deposits: I. Thermodynamics of Mg(NO3)2–H2O and solubilities in the Na+–Mg2+–NO 3 –SO 2−4 –H2O system. Chem. Geol. 436, 84–97 (2016)

    Article  CAS  Google Scholar 

  48. Königsberger, E., Eriksson, G., May, P.M., Hefter, G.: Comprehensive model of synthetic Bayer liquors. Part 1. Overview. Ind. Eng. Chem. Res. 44, 5805–5814 (2005)

    Article  CAS  Google Scholar 

  49. Azimi, G., Papangelakis, V.G., Dutrizac, J.E.: Modelling of calcium sulphate solubility in concentrated multi-component sulphate solutions. Fluid Phase Equilib. 260, 300–315 (2007)

    Article  CAS  Google Scholar 

  50. Lindström, N., Heitmann, N., Linnow, K., Steiger, M.: Crystallization behavior of NaNO3–Na2SO4 salt mixtures in sandstone and comparison to single salt behavior. Appl. Geochem. 63, 116–132 (2015)

    Article  CAS  Google Scholar 

  51. Sohr, J., Voigt, W., Zeng, D.: IUPAC–NIST Solubility Data Series. 104. Lithium sulfate and its double salts in aqueous solutions. J. Phys. Chem. Ref. Data 46, 023101 (2017)

    Article  CAS  Google Scholar 

  52. Harvie, C.E., Weare, J.H., Hardie, L.A., Eugster, H.P.: Evaporation of seawater: calculated mineral sequences. Science 208, 498–500 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiger, M., Voigt, W. Solid–Liquid Metastable Equilibria for Solar Evaporation of Brines and Solubility Determination: A Critical Discussion. J Solution Chem 48, 1009–1024 (2019). https://doi.org/10.1007/s10953-018-0794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0794-0

Keywords

Navigation