Skip to main content
Log in

Neptunium(VI) solubility in alkaline CaCl2 solutions: evidence for the formation of calcium neptunates Ca x NpO3+x (s,hyd)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The solubility behavior of hexavalent neptunium (Np) was systematically investigated as function of [CaCl2] = 0.25–4.5 mol dm−3 [0.252–5.26 mol (kg H2O)−1] and pHm 8–12 (pHm = − log{m(H+)/mol (kg H2O)−1}) under oxidizing conditions adjusted by hypochlorite. As solubility limiting Np(VI) solid phase, hitherto unknown, non-stoichiometric calcium neptunates, Ca x NpO3+x (s,hyd), were identified by applying a wide range of analytical techniques including quantitative chemical analysis, powder XRD, Np L3-edge XANES, and SEM–EDX. The Ca:Np ratio in the equilibrium solid phase increased systematically with the pHm values in the batch solubility samples, and ranged between 0.60:1 and 1.66:1. For pHm > 10.5, the solubility of the calcium neptunates is around log{[Np]/mol (kg H2O)−1} ≈ − 6.1 ± 0.4 and does not show a strong dependence on [CaCl2]. For pHm < 10.5, log [Np] ranges from − 6.6 in 0.25 mol dm−3 CaCl2 to − 3.6 in 4.5 mol dm−3 CaCl2, and increases systematically with [CaCl2]. Based on the solubility data, the principle solid–liquid equilibrium reactions were qualitatively evaluated. The results for Np(VI) obtained in the present work were found to be different from the behavior of U(VI) in alkaline CaCl2 solutions, where the well-defined crystalline CaU2O7·3H2O(cr) phase controls the U(VI) solubility over a wide range of pHm and [CaCl2] conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guillaumont R, Fanghänel Th, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Chemical thermodynamics vol. 5, update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, North-Holland

    Google Scholar 

  2. Morss LR, Edelstein NM, Fuger J (2008) The chemistry of the actinide and transactinide elements. Springer, Dordrecht

    Google Scholar 

  3. Neck V, Altmaier M, Fanghänel T (2007) C R Chim (France) 10:959

    Article  CAS  Google Scholar 

  4. Gaona X, Fellhauer D, Altmaier M (2013) Pure Appl Chem 85:2027

    Article  CAS  Google Scholar 

  5. Cassol A, Magon L, Tomat G, Portanova R (1972) Inorg Chem 11:515

    Article  CAS  Google Scholar 

  6. Kato Y, Kimura T, Yoshida Z, Nitani N (1996) Radiochim Acta 74:21

    Article  CAS  Google Scholar 

  7. Gaona X, Tits J, Dardenne K, Liu X, Denecke MA, Wieland E, Altmaier M (2012) Radiochim Acta 100:759

    Article  CAS  Google Scholar 

  8. Bagnall KW, Laidler JB (1964) J Chem Soc 2693. https://doi.org/10.1039/jr9640002693

  9. Saito T, Wang J, Kitazawa T, Takahashi M, Takeda M, Nakada M, Nakamoto T, Masaki NM, Yamashita T, Saeki M (1999) Radioanal Nucl Chem 239:319

    Article  CAS  Google Scholar 

  10. Keller C, Koch L, Walter KH (1965) J Inorg Nucl Chem 27:1205

    Article  CAS  Google Scholar 

  11. Williams CW, Blaudeau J-P, Sullivan JC, Antonio MR, Bursten B, Soderholm L (2001) J Am Chem Soc 123:4346

    Article  CAS  Google Scholar 

  12. Bolvin H, Wahlgren U, Moll H, Reich T, Geipel G, Fanghänel T, Grenthe I (2001) J Phys Chem A 105:11441

    Article  CAS  Google Scholar 

  13. Gaona X, Wieland E, Tits J, Scheinost A, Dähn R (2013) Appl Geochem 28:109

    Article  CAS  Google Scholar 

  14. Clark DL, Conradson SD, Donohoe RJ, Gordon PL, Keogh DW, Palmer PD, Scott BL, Tait CD (2013) Inorg Chem 52:3547

    Article  CAS  Google Scholar 

  15. Neck V, Altmaier M, Rabung T, Lützenkirchen J, Fanghänel T (2009) Pure Appl Chem 81:1555

    Article  CAS  Google Scholar 

  16. Altmaier M, Neck V, Fanghänel T (2008) Radiochim Acta 96:541

    Article  Google Scholar 

  17. Fellhauer D, Neck V, Altmaier M, Lützenkirchen J, Fanghänel T (2010) Radiochim Acta 98:541

    Article  CAS  Google Scholar 

  18. Yalcintas E, Gaona X, Altmaier M, Dardenne K, Polly R, Geckeis H (2016) Dalton Trans 45:8916

    Article  Google Scholar 

  19. Fellhauer D, Rothe J, Altmaier M, Neck V, Runke J, Wiss T, Fanghänel T (2016) Radiochim Acta 104:355

    CAS  Google Scholar 

  20. Fellhauer D, Altmaier M, Gaona X, Lützenkirchen J, Fanghänel T (2016) Radiochim Acta 104:381

    CAS  Google Scholar 

  21. Altmaier M, Neck V, Müller R, Fanghänel T (2005) Abstract No. A1-3, 10th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere. Avignon, France

  22. Vochten R, van Haverbeke L (1990) Mineral Petrol 43:65

    Article  CAS  Google Scholar 

  23. Sandino MCA, Grambow B (1994) Radiochim Acta 66/67:37

    Article  CAS  Google Scholar 

  24. Rai D, Felmy AR, Hess NJ, LeGore VL, McCready DE (2002) Radiochim Acta 90:495

    Article  CAS  Google Scholar 

  25. Diaz Arocas P, Grambow B (1998) Geochim Cosmochim Acta 62:245

    Article  Google Scholar 

  26. Allen PG, Shuh DK, Bucher JJ, Edelstein NM, Palmer CEA, Silva RJ, Nguyen SN, Marquez LN, Hudson EA (1996) Radiochim Acta 75:47

    Article  CAS  Google Scholar 

  27. Altmaier M, Yalcintas E, Gaona X, Neck V, Müller R, Schlieker M, Fanghänel T (2017) J Chem Therm 114:2

    Article  CAS  Google Scholar 

  28. Pashalidis I, Kim JI, Lierse C, Sullivan JC (1993) Radiochim Acta 60:99

    Article  CAS  Google Scholar 

  29. Hagan PG, Cleveland JM (1966) J Inorg Nucl Chem 28:2905

    Article  CAS  Google Scholar 

  30. Runde W, Neu MP, Conradson SD, Clark DL, Palmer PD, Reilly SD, Scott BL, Tait CD (1996) Mat Res Soc Symp Proc 465:693

    Article  Google Scholar 

  31. Hartmann T, Paviet-Hartmann P, Wetteland C, Lu N (2003) Rad Phys Chem 66:335

    Article  CAS  Google Scholar 

  32. Nguyen-Trung C (2002) Ph.D. thesis, University of Nancy

  33. Clark DL, Conradson SD, Neu MP, Palmer PD, Runde W, Tait CD (1997) J Am Chem Soc 119:5259

    Article  CAS  Google Scholar 

  34. Lippmann F (1977) Neues Jahrb Mineral. Abh 130:243

    CAS  Google Scholar 

  35. Gamsjäger H, Königsberger E, Preis W (2000) Aquat Geochem 6:119

    Article  Google Scholar 

  36. Reilly SD, Neu MP (2006) Inorg Chem 45:1839

    Article  CAS  Google Scholar 

  37. Rothe J, Butorin S, Dardenne K, Denecke MA, Kienzler B, Löble M, Metz V, Seibert A, Steppert M, Vitova T, Walther C, Geckeis H (2012) Rev Sci Instrum 83:1

    Article  Google Scholar 

Download references

Acknowledgements

Technical support by V. Petrov (Moscow State University), S. Moisei-Rabung and P. Leske (KIT—Institute for Nuclear Waste Disposal) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fellhauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fellhauer, D., Gaona, X., Rothe, J. et al. Neptunium(VI) solubility in alkaline CaCl2 solutions: evidence for the formation of calcium neptunates Ca x NpO3+x (s,hyd). Monatsh Chem 149, 237–252 (2018). https://doi.org/10.1007/s00706-017-2116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2116-4

Keywords

Navigation