Skip to main content
Log in

Equilibrium Study of Complex Formation Among Trivalent Metals, Glycine Peptides and Phenolates in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability of binary and mixed-ligand complexes among trivalent transition metal ions (chromium and iron), glycine peptides (glycylglycine and glycylglycylglycine) and phenolates (ferulic acid and gallic acid) were studied by using pH-potentiometric titration in aqueous solution at 298.15 K and ionic strength of 0.15 mol·dm−3 NaNO3. The complexation model for each system was obtained by processing the potentiometric titration data using the HYPERQUAD2008 program. The stability constant trend of complexes in both systems and the contributions of deprotonated or protonated amide peptides to the stability of the complexes is discussed. The stability of the mixed-ligand complexes relative to their corresponding binary complexes was also investigated by calculating the ∆log10 K parameter of each system. In addition, the Gibbs energies of reaction (Δr G) obtained from the Gaussian modeling program with B3LYP/6-31+G(d) basis set were used to verify the contributing binding sites of the ligands and to predict the structures of the M–L complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Gp:

Glycine peptides

G:

Glycine

GG:

Diglycine

GGG:

Triglycine

Ph:

Phenolates

FA:

Ferulic acid

GA:

Gallic acid

References

  1. Irwin, R.J.: Environmental Contaminants Encyclopedia: Chromium III (Trivalent Chromium) Entry. National Park Service, Water Resources Division, Fort Collins (1997)

    Google Scholar 

  2. Grevat, P.C.: Toxicological Review of Trivalent Chromium. U.S. Environmental Protection Agency, Washington, DC (1998)

    Google Scholar 

  3. Khade, B.C., Deore, P.N., Arbad, B.R.: Composition and stability of chromium metal complexes with drug salbutamol and amino acid. Pharma Sci. Monitor. 2, 73–86 (2011)

    CAS  Google Scholar 

  4. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. A Comprehensive Text, 4th edn. Wiley, New York (1980)

    Google Scholar 

  5. Faa, G., Crisponi, G.: Iron chelating agents in clinical practice. Coord. Chem. Rev. 184, 291–310 (1999)

    Article  CAS  Google Scholar 

  6. Papanikolaou, G., Pantopoulos, K.: Iron metabolism and toxicity. Toxicol. App. Pharm. 202, 199–211 (2005)

    Article  CAS  Google Scholar 

  7. Muir, A., Hopfer, U.: Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am. J. Physiol. 248, 376–379 (1985)

    Google Scholar 

  8. Nelson, L.S., Lewin, N.A., Howland, M.A., Hoffman, R.S., Goldfrank, L.R., Flomenbaum, N.E.: Goldfrank’s Toxicological Emergencies, 8th edn. McGraw-Hill, New York (2008)

    Google Scholar 

  9. Flora, S.J.S., Pachauri, V.: Chelation in metal intoxication. Int. J. Environ. Res. Public Health 7, 2745–2788 (2010)

    Article  CAS  Google Scholar 

  10. Rogan, W.J., Dietrich, K.N., Ware, J.H., Dockery, D.W., Salganik, M., Radcliffe, J., Jones, R.L., Ragan, N.B., Chisolm, J.J.J., Rhoads, G.G.: The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. New Eng. J. Med. 344, 1421–1426 (2001)

    Article  CAS  Google Scholar 

  11. May, M.E., Hill, J.O.: Energy content of diets of variable amino acid composition. Am. J. Clin. Nutr. 52, 766–770 (1990)

    Google Scholar 

  12. Sigel, H., Martin, R.B.: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82, 385–426 (1981)

    Article  Google Scholar 

  13. Brown, J.A., Khodr, H., Hider, R.C., Rice-Evans, C.: Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330, 1173–1178 (1998)

    Article  CAS  Google Scholar 

  14. Srinivasan, M., Sudheer, A.R., Menon, V.P.: Ferulic acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 40, 92–100 (2006)

    Article  Google Scholar 

  15. Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., Bahorun, T.: Phenolics as potential anti-oxidant therapeutic agents: mechanism and actions. Mutat. Res. 579, 200–213 (2005)

    Article  CAS  Google Scholar 

  16. Zhou, B., Jia, Z.-S., Chen, Z.-H., Yang, L., Wu, L.-M., Liu, Z.-L.: Synergistic antioxidant effect of green tea polyphenols with α-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. J. Chem. Soc. Perkin Trans. 2, 785–791 (2000)

    Article  Google Scholar 

  17. Zhang, H.-M., Wang, C.-F., Liu, Z.-M., Wang, Y.-Y., Du, S.-S., Shen, S.-M., Wang, G.-L., Liu, P., Deng, Z.-W., Liu, Z.-L.: Antioxidant phenolic compounds from Pu-erh tea. Molecules 17, 14037–14045 (2012)

    Article  CAS  Google Scholar 

  18. Mertz, C., Brat, P., Cheynier, V., Guenata, Z.: Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 55, 8616–8624 (2007)

    Article  CAS  Google Scholar 

  19. Ohashi, H., Yamamoto, E., Lewis, N.G., Towers, G.H.N.: 5-Hydroxyferulic acid in zea mays and hordeum vugare cell walls. Phytochemistry 26, 1915–1916 (1987)

    Article  CAS  Google Scholar 

  20. Teuchy, H., Van-Sumere, C.F.: The metabolism of (1-14C) phenylalanine, (3-14C) cinnamic acid and (2-14C) ferulic acid in the rat. Arch. Int. Physiol. Biochim. 79, 589–618 (1971)

    CAS  Google Scholar 

  21. Adam, A., Crespy, V., Levrat-Verny, M.A., Leenhardt, F., Leuillet, M., Demigne, C., Remesy, C.: The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 132, 1962–1968 (2002)

    CAS  Google Scholar 

  22. Graf, E.: Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13, 435–448 (1992)

    Article  CAS  Google Scholar 

  23. Fujimaki, M., Tsugita, T., Kurata, T.: Fractionation and identification of volatile acids and phenols in the steam distillate of rice bran. Agric. Biol. Chem. 41, 1721–1725 (1977)

    Article  CAS  Google Scholar 

  24. Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T.: Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 18, 1526–1530 (1995)

    Article  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision A.1. 2009. Gaussian, Inc.: Wallingford CT (2009)

  26. Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)

    Article  CAS  Google Scholar 

  27. House, J.E.: Inorganic Chemistry, 1st edn. Academic Press/Elsevier (2008)

  28. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  29. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998)

    Article  Google Scholar 

  30. Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  31. Ramos, J.M., Versiane, O., Felcman, J., Téllez Soto, C.A.: Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta Part A 68, 1370–1378 (2007)

    Article  Google Scholar 

  32. Ramos, J.M., Versiane, O., Felcman, J., Téllez Soto, C.A.: FT-IR vibrational spectrum and DFT: B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate-guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta Part A 72, 182–189 (2009)

    Article  Google Scholar 

  33. Chachkov, D.V., Mikhailov, O.V.: DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion–dithiooxamide–formaldehyde. Russ. J. Inorg. Chem. 54, 1952–1956 (2009)

    Article  Google Scholar 

  34. Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S.: Ab initio molecular orbital study of the complexing behavior of N-ethyl-1-naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A 146, 163–168 (2002)

    Article  CAS  Google Scholar 

  35. Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.-H.: Cu(II), Co(II), and Ni(II)—antioxidative phenolate–glycine peptide systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57, 3443–3451 (2012)

    Article  CAS  Google Scholar 

  36. Hernowo, E.: Stability Constant Study: First Transition Metal Ions with Biological Important Ligands; Gallic Acid, l-Norleucine and Nicotinic Acid. LAP LAMBERT Academic Publishing, Germany (2011)

    Google Scholar 

  37. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic Acid. J. Chem. Eng. Data 56, 532–540 (2011)

    Article  CAS  Google Scholar 

  38. Pettit, L.D., Powell, K.J.: A Comprehensive Database of Published Data on Equilibrium Constants of Metal Complexes and Ligands. IUPAC and Academic Software (2001)

  39. Hong, C.-P., Kim, D.-W., Choi, K.-Y., Kim, C.-T., Choi, Y.G.: Stability constants of first-row transition metal and trivalent lanthanide metal ion complexes with macrocyclic tetraazatetraacetic and tetraazatetramethylacetic acids. Bull. Korean Chem. Soc. 20, 297–300 (1999)

    CAS  Google Scholar 

  40. Brunetti, A.P., Lim, M.C., Nancollas, G.H.: Thermodynamics of ion association. XVII. Copper complexes of diglycine and triglycine. J. Am. Chem. Soc. 90, 5120–5126 (1968)

    Article  CAS  Google Scholar 

  41. Pagenkopf, G.K., Margerum, D.W.: Proton-transfer reaction with copper(II)–triglycine (CuH-2L). J. Am. Chem. Soc. 90, 501–502 (1968)

    Article  CAS  Google Scholar 

  42. Martin, R.B., Chamberlin, M., Edsall, J.T.: The association of nickel(II) ion with peptides. J. Am. Chem. Soc. 82, 495–498 (1960)

    Article  CAS  Google Scholar 

  43. Basolo, F., Chen, Y.T., Murmann, R.K.: Steric effects and the stability of complex compounds. IV. The chelating tendencies of c-substituted ethylenediamines with copper(II) and nickel(II) ions. J. Am. Chem. Soc. 76, 956–959 (1954)

    Article  CAS  Google Scholar 

  44. Lenarcik, B., Kierzkowska, A.: The Influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4(5)-methylimidazoles. Sep. Sci. Technol. 39, 3485–3508 (2004)

    Article  CAS  Google Scholar 

  45. Sigel, H., Prijs, B., Martin, R.B.: Stability of binary and ternary β-alanine containing dipeptide copper(II) complexes. Inorg. Chim. Acta 56, 45–49 (1981)

    Article  CAS  Google Scholar 

  46. Turkel, N., Sahin, C.: Stability of binary and ternary copper(II) complexes with 1,10-phenanthroline, 2,2′-bipyridyl and some α-amino acids in aqueous medium. Chem. Pharm. Bull. 57, 694–699 (2009)

    Article  CAS  Google Scholar 

  47. Khade, B.C., Deore, P.M., Arbad, B.R.: Mixed-ligand complex formation of copper(II) with some aminoacids and drug dapsone. Int. J. ChemTech. Res 2, 1036–1041 (2010)

    CAS  Google Scholar 

  48. Lozano, M.J., Borras, J.: Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(II) and Cd(II) ions. J. Inorg. Biochem. 31, 187–195 (1987)

    Article  CAS  Google Scholar 

  49. Khalil, M.M., Fazary, A.E.: Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 135, 1455–1474 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports by the National Science Council of Taiwan (NSC 102-2221-E-011-079) and National Taiwan University of Science and Technology (101H451403) are greatly appreciated. The authors thank to Prof. Jiang Jyh-Chiang for his valuable suggestions regarding the Gaussian Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsu Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angkawijaya, A.E., Santoso, S.P., Soetaredjo, F.E. et al. Equilibrium Study of Complex Formation Among Trivalent Metals, Glycine Peptides and Phenolates in Aqueous Solution. J Solution Chem 44, 2129–2143 (2015). https://doi.org/10.1007/s10953-015-0397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0397-y

Keywords

Navigation