Skip to main content
Log in

Binding Modes of Cabergoline to Bovine Serum Albumin in Free- and β-Cyclodextrin-Encapsulated Forms: Differences in Quenching Behavior and Förster Resonance Energy Transfer

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We report, in this paper, the interaction of cabergoline in the free form and β-cyclodextrin-bound form with bovine serum albumin. The stoichiometry and the binding constant of the Cabergoline–β-cyclodextrin inclusion complex are reported based on UV–Vis absorption and fluorescence spectroscopic studies and the structure of the 1:1 inclusion complex is proposed using two-dimensional rotating-frame Overhauser effect spectroscopy. Molecular docking is used to propose the mode of interaction of cabergoline with bovine serum albumin. The apparent binding constants for the interaction of cabergoline with bovine serum albumin in water and in aqueous β-cyclodextrin solution are compared. The average distance between donor and acceptor is altered in the presence of β-cyclodextrin, as indicated by Förster resonance energy transfer. The influence of β-CD on the binding of the small molecule with bovine serum albumin is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reichmann, H.: Long-term treatment with dopamine agonists in idiopathic Parkinson’s disease. J. Neurol. 247, 17–19 (2000)

    Article  Google Scholar 

  2. Webster, J., Piscitelli, G., Polli, A., Ferrari, C.I., Ismail, I., Scanlon, M.F.: The cabergoline comparative study group: a comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. N. Eng. J. Med. 331, 904–909 (2004)

    Article  Google Scholar 

  3. Abs, R., Verhelst, J., Maiter, D., Van Acker, K., Nobels, F., Coolens, J.L., Mahler, C., Beckers, A.: Cabergoline in the treatment of acromegaly: a study in 64 patients. J. Clin. Endocrinol. Metabol. 833, 74–78 (1998)

    Google Scholar 

  4. Petrossians, P., Ronci, N., Valdes-Socin, H., Kalife, A., Stevenaert, A., Bloch, B., Tabarin, A., Beckers, A.: ACTH silent adenoma shrinking under cabergoline. Eur. J.Endocrinol. 144, 51–57 (2001)

    Article  CAS  Google Scholar 

  5. Annamaria, C., Giovanni, V., Paolo, C., Francesco, B., Antonio, C., Michele, D.R., Stefano, Z., Gaetano, L.: Outcome of cabergoline treatment in men with prolactinoma: effects of a 24-month treatment on prolactin levels, tumor mass, recovery of pituitary function, and semen analysis. J. Clin. Endocrinol. Metabol. 89, 1704–1711 (2004)

    Article  Google Scholar 

  6. Zucconi, M., Oldani, A., Castronovo, C., Ferini-Strambi, I.: Cabergoline is an effective single-drug treatment for restless legs syndrome: clinical and actigraphic evaluation. Sleep 26, 815–818 (2003)

    Google Scholar 

  7. Cozzi, R., Attanasio, R., Barausse, M., Dallabonzana, D., Orlandi, P., Re, N.D., Branca, V., Oppizzi, G., Gelli, D.: Cabergoline in acromegaly: a renewed role for dopamine agonist treatment ? Eur. J. Endocrinol. 139, 516–521 (1998)

    Article  CAS  Google Scholar 

  8. Colmenarejo, G.: In silico prediction of drug binding strengths to human serum albumin. Med. Res. Rev. 23, 275–301 (2003)

    Article  CAS  Google Scholar 

  9. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K.: Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 12, 439–446 (1999)

    Article  CAS  Google Scholar 

  10. Molla, A., Vasavanonda, S., Kumar, G., Sham, H.L., Johnson, M., Grabowski, B., Denissen, J.F., Kohlbrenner, W., Plattner, J.J., Leonard, J.M., Norbeck, D.W., Kempf, D.J.: Human serum attenuates the activity of protease inhibitors toward wild-type and mutant human deficiency virus. Virology 250, 255–262 (1998)

    Article  CAS  Google Scholar 

  11. Rang, H.P., Dale, M.M., Ritter, J.: Molecular Pharmacology, 3rd edn. Churchill Livingstone, New York (1995)

    Google Scholar 

  12. Riihimaki, L.H., Vainio, M.J., Heikura, J.M.S., Valkonen, K.H., Virtanen, V.T., Vuorela, P.M.: Binding of phenolic compounds and their derivatives to bovine and reindeer β-lactoglobulin. J. Agric. Food Chem. 56, 7721–7729 (2008)

    Article  CAS  Google Scholar 

  13. Xiao, J.B., Cao, H., Wang, Y.F., Zhao, J.Y., Wei, X.L.: Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J. Agric. Food Chem. 57, 6642–6648 (2009)

    Article  CAS  Google Scholar 

  14. He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)

    Article  CAS  Google Scholar 

  15. Papadopoulou, A., Green, R.J., Frazier, R.A.: Interaction of flavonoids with bovine serum albumin: a fluorescence quenching. J. Agric. Food Chem. 53, 158–163 (2005)

    Article  CAS  Google Scholar 

  16. Turnidge, J.: Pharmacokinetics and pharmacodynamic of fluoroquinolones. Drugs 58, 29–36 (1999)

    Article  CAS  Google Scholar 

  17. Sinjan, C., Nand, K.: Unraveling the energetics and mode of the recognition of antibiotics tetracycline and rolitetracycline by bovine serum albumin. Chem. Biol. Drug Des. 80, 693–705 (2012)

    Article  Google Scholar 

  18. Maliwal, B.P., Rao, A.G.A., Rao, M.S.N.: Spectroscopic study of the interaction of gossypol with bovine serum albumin. Int. J. Pept. Protein Res. 25, 382–388 (1985)

    Article  CAS  Google Scholar 

  19. Meier-Kriesche, H.U., Shaw, L.M., Korecka, M., Kaplan, B.: Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther. Drug Monit. 22, 27–30 (2000)

    Article  CAS  Google Scholar 

  20. Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G., Diamantoglou, S., Tajmir-Riahi, H.A.: Antioxidant flavonoids bind human serum albumin. J. Mol. Struct. 798, 69–74 (2006)

    Article  CAS  Google Scholar 

  21. Tang, J.H., Luan, F., Chen, X.G.: Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FT-IR, and molecular modeling. Bioorg. Med. Chem. 14, 3210–3217 (2006)

    Article  CAS  Google Scholar 

  22. Valero, M., Carrillo, C.: Effect of binary and ternary poly-ethylene glycol and/or β-cyclodextrin complexes on the photochemical and photosensitizing properties of naproxen. J. Photochem. Photobiol. B 74, 151–160 (2004)

    Article  CAS  Google Scholar 

  23. Zhang, G., Shuang, S., Dong, C., Liu, D., Choi, M.M.F.: Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy. J. Photochem. Photobiol. B 74, 127–134 (2004)

    Article  CAS  Google Scholar 

  24. Szejtli, J.: Cyclodextrin Technology. Kluwer, Dordrecht (1998)

    Google Scholar 

  25. Pitha, J., Milecki, J., Fales, H., Pannell, L., Uekama, K.: Hydroxypropyl-β-cyclodextrin: preparation and characterization; effects on solubility of drugs. Int. J. Pharm. 29, 73–82 (1986)

    Article  CAS  Google Scholar 

  26. Brewster, M., Hora, M., Simpkins, J., Bodor, N.: Uses of 2-hydroxpropyl-β-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs. Pharm. Res. 8, 792–795 (1991)

    Article  CAS  Google Scholar 

  27. Heindell, N.D., Egolf, R.A., Stefely, J.S.: Effect of liposome and cyclodextrin entrapment on retardation of glutathione decomposition of nitroimidazolylsulfones. J. Pharm. Sci. 79, 862–865 (1990)

    Article  Google Scholar 

  28. Brewster, M., Loftsson, T., Eastes, K., Lin, J.L., Fridriksdottir, H., Bodor, N.: Effect of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride. Int. J. Pharm. 79, 289–299 (1992)

    Article  CAS  Google Scholar 

  29. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  30. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  31. Atwood, J.L., Davies, J.E., MacNicol, D.D., Vogtle, F., Lehn, J.-M.: Comprehensive Supramolecular Chemistry. Elsevier, New York (1996)

    Google Scholar 

  32. Enoch, I.V.M.V., Swaminathan, M.: Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007)

    Article  CAS  Google Scholar 

  33. Enoch, M.V., Rajamohan, R., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 3,3′-diaminodiphenylsulphone with β-cyclodextrin and its unusual behavior. Spectrochim. Acta A77, 473–477 (2010)

    Article  Google Scholar 

  34. Enoch, I.V.M.V., Swaminathan, M.: Fluorimetric study on molecular recognition of β-cyclodextrin with 2-amino-9-fluorenone. J. Fluoresc. 16, 501–510 (2006)

    Article  CAS  Google Scholar 

  35. Sideris, E.E., Koupparis, M.A., Macheras, P.E.: Effect of cyclodextrins on protein binding of drugs: the diflunisal/hydroxypropyl-β-cyclodextrin model case. Pharm. Res. 11, 90–95 (1994)

    Article  CAS  Google Scholar 

  36. Sudha, N., Enoch, I.V.M.V.: Binding of curculigosides and their β-cyclodextrin inclusion complexes with bovine serum albumin: A fluorescence spectroscopic study. J. Solution Chem. 40, 1755–1768 (2011)

    Article  CAS  Google Scholar 

  37. Sameena, Y., Enoch, I.V.M.V.: Spectroscopic investigation of interaction of 6-methoxyflavanonoe and its β-cyclodextrin inclusion complex with calf thymus DNA. Chem. Pap. 66, 787–794 (2012)

    Google Scholar 

  38. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn, pp. 277–284. Springer, New York (2006)

    Book  Google Scholar 

  39. Loftsson, T., Mason, M.: Cyclodextrins in topical drug formulations: theory and practice. Int. J. Pharm. 225, 15–30 (2001)

    Article  CAS  Google Scholar 

  40. Chandrasekaran, S., Sameena, Y., Enoch, I.V.M.V., Santhanam, V.: Binding of the host-guest complex of 7-aminoflavone/β-cyclodextrin with calf thymus DNA: a spectroscopic and molecular docking study. J. Solution Chem. 43, 1132–1146 (2014)

    Article  CAS  Google Scholar 

  41. Chandrasekaran, S., Sameena, Y., Enoch, I.V.M.V.: Tuning the binding of Coumarin 6 with DNA by molecular encapsulators: effect of β-cyclodextrin and C-hexylpyrogallol[4]arene. J. Mol. Recognit. 27, 640–652 (2014)

    Article  CAS  Google Scholar 

  42. Förster, T.: Delocalized excitation and excitation transfer. In: Sinanoglu, O. (ed.) Modern Quantum Theory. Academic Press, New York (1996)

    Google Scholar 

  43. Chandrasekaran, S., Sameena, Y., Enoch, I.V.M.V.: The unusual fluorescence quenching of Coumarin 314 by β-cyclodextrin and the effect of β-cyclodextrin on its binding with calf thymus DNA. Aust. J. Chem. 67, 256–265 (2014)

    Google Scholar 

  44. Valero, M., Esteban, B., Peláez, R., Rodríguez, L.J.: Naproxen: hydroxypropyl-β-cyclodextrin: polyvinylpyrrolidone ternary complex formation. J. Incl. Phenom. Macro. Chem. 48, 157–163 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sense of gratitude to the SAIF, Indian Institute of Technology–Madras, Chennai, for the assistance in NMR measurements. We thank the DST–SERB for the Project SR/FT/CS-062/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel V. M. V. Enoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, N., Enoch, I.V.M.V. Binding Modes of Cabergoline to Bovine Serum Albumin in Free- and β-Cyclodextrin-Encapsulated Forms: Differences in Quenching Behavior and Förster Resonance Energy Transfer. J Solution Chem 44, 1367–1381 (2015). https://doi.org/10.1007/s10953-015-0355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0355-8

Keywords

Navigation