Skip to main content
Log in

Effect of Asymmetric Dimeric Zwitterionic Surfactants on Micellization Behavior of Amphiphilic Drugs

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The micellization process in mixtures of amphiphilic drugs and asymmetric dimeric zwitterionic surfactants have been investigated tensiometrically. The drugs used are from two families: imipramine hydrochloride (IMP)—a tricyclic antidepressant and ibuprofen (IBF)—a nonsteroidal antiinflammatory drug, whereas zwitterionic dimeric surfactants are heterogemini surfactants that contain quaternary ammonium and phosphate groups as heads. The results show that the cmc of drug-surfactant mixtures decreases with the increase in stoichiometric mole fraction of surfactants (α 1), suggesting attractive interaction among the two components. This is supported by the values of cmc id (critical micelle concentration values for ideal mixing) which are always greater than experimental cmc values. Also, the decrease in magnitude is more in IBF–dimeric surfactant mixed systems than in IMP–dimeric surfactant mixed systems. Micellar mole fraction values, obtained using Rubingh’s (\( X_{\text{1}}^{\text{m}} \)) and Motomura’s (\( X_{\text{1}}^{\text{m}} \)) models, are lower than the micellar mole fraction for ideal mixing (\( X_{\text{1}}^{{\text{id}}} \)). The micellar interaction parameter (\( \beta^{\text{m}} \)) follows the order: 8(−)−2−16(+) > 10(−)−2−16(+) > 10(−)−2−14(+) > 8(−)−2−14(+). The results are explained on the basis of difference in tail lengths. Interfacial mole fraction (\( X_{\text{1}}^{\upsigma} \)) values, evaluated using Rosen’s model, are higher than \( X_{\text{1}}^{\text{m}} \) values for IMP-10(−)−2−16(+) and IMP-10(−)−2−14(+) systems while for all other systems (except 8(−)−2−14(+)) the values are smaller than \( X_{\text{1}}^{\text{m}} \). The interaction parameter at the interface (\( \beta^{\upsigma} \)) is negative and \( \beta_{av}^{\text{m}} \) values are greater than \( \beta_{av}^{\upsigma} \) in magnitude. All the results indicate that the dimeric surfactants are mostly in cationic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Dressman, J., Reppas, C.: Drug solubility: how to measure it, how to improve it. Adv. Drug Deliv. Rev. 59, 531–532 (2007)

    Article  CAS  Google Scholar 

  2. Dalmora, M.E., Dalmora, S.L., Oliveira, A.G.: Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. Int. J. Pharm. 222, 45–55 (2001)

    Article  CAS  Google Scholar 

  3. Torchilin, V.P.: Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61, 2549–2559 (2004)

    Article  CAS  Google Scholar 

  4. Bertrand, N., Leroux, J.C.: The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control Release 161, 152–163 (2012)

    Article  CAS  Google Scholar 

  5. Scott, R.C., Crabbe, D., Krynska, B., Ansari, R., Kiani, M.F.: Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opinion Drug Deliv. 5, 459–470 (2008)

    Article  CAS  Google Scholar 

  6. Zana, R., Benrraou, M., Rueff, R.: Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1072–1075 (1991)

    Article  CAS  Google Scholar 

  7. Azum, N., Naqvi, A.Z., Akram, M., Kabir-ud-Din: Studies of mixed micelle formation between cationic gemini and cationic conventional surfactants. J. Colloid Interface Sci. 328, 429–435 (2008)

    Article  CAS  Google Scholar 

  8. Wettig, S.D., Verrall, R.E., Foldvari, M.: Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Curr. Gene Ther. 8, 9–23 (2008)

    Article  CAS  Google Scholar 

  9. Mohammed-Saeid, W., Michel, D., El-Aneed, A., Verrall, R.E., Low, N.H., Badea, I.: Development of lyophilized gemini surfactant-based gene delivery systems: Influence of lyophilization on the structure, activity and stability of the lipoplexes. J. Pharm. Pharm. Sci. 15, 548–567 (2012)

    CAS  Google Scholar 

  10. Sun, Y., Feng, Y., Dong, H., Chen, Z., Han, L.: Synthesis and aqueous solution properties of homologous gemini surfactants with different head groups. Cent. Eur. J. Chem. 5, 620–634 (2007)

    Article  CAS  Google Scholar 

  11. Ansari, W.H., Noori, S., Naqvi, A.Z., Kabir-ud-Din: Interaction between zwitterionic surfactants and amphiphilic drug: a tensiometric study. Z. Phys. Chem. 227, 441–458 (2013)

    Article  CAS  Google Scholar 

  12. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Effect of inorganic salts and ureas on the micellization behavior of antidepressant drug imipramine hydrochloride at various concentrations and temperatures. Acta Phys. Chim. Sin. 28, 885–891 (2012)

    CAS  Google Scholar 

  13. Ridell, A., Evertsson, H., Nilsson, S., Sundelof, L.O.: Amphiphilic association of ibuprofen and two nonionic cellulose derivatives in aqueous solution. J. Pharm. Sci. 88, 1175–1181 (1999)

    Article  CAS  Google Scholar 

  14. Lindemuth, P.M., Bertrand, G.L.: Calorimetric observations of the transition of spherical to rodlike micelles with solubilized organic additives. J. Phys. Chem. 97, 7769–7773 (1993)

    Article  CAS  Google Scholar 

  15. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New Jersey (2004)

    Book  Google Scholar 

  16. Kabir-ud-Din, Sharma, G., Naqvi, A.Z., Chaturvedi, S.K., Khan, R.H.: Ion-dipole induced interaction between cationic gemini/TTAB and nonionic (Tween) surfactants: interfacial and microstructural phenomena. RSC Adv. 3, 6549–6959 (2013)

    Article  Google Scholar 

  17. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1(71), 1327–1334 (1975)

    Article  Google Scholar 

  18. Schulz, P.C., Rodríguez, J.L., Minardi, R.M., Sierra, M.B., Morini, M.A.: Are the mixtures of homologous surfactants ideal? J. Colloid Interface Sci. 303, 264–271 (2006)

    Article  CAS  Google Scholar 

  19. Schulz, P.C.: Factors affecting mixed aggregation. In: Paul, B.K. (ed.) Statistical science and interdisciplinary research. Recent Trends in Surface & Colloid Science, vol. 21. World Scientific Publishers Pvt. Ltd., Singapore (2012)

    Google Scholar 

  20. Rubingh, D.N.: Mixed micellar solutions. In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants. Plenum, New York (1979)

    Google Scholar 

  21. Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polymer Sci. 262, 948–955 (1984)

    Article  CAS  Google Scholar 

  22. Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N., Iyota, H.: Thermodynamic consideration of mixtures of surfactants in adsorbed films and micelles. J. Colloid Interface Sci. 200, 161–171 (1998)

    Article  CAS  Google Scholar 

  23. Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess. Plenum, New York (1984)

    Book  Google Scholar 

  24. Zhou, Q., Rosen, M.J.: Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19, 4555–4562 (2003)

    Article  CAS  Google Scholar 

  25. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12, 1208–1211 (1996)

    Article  CAS  Google Scholar 

  26. Rosen, M.J., Aronson, S.: Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids Surf. 3, 201–208 (1981)

    Article  CAS  Google Scholar 

  27. Sugihara, G., Miyazono, A., Nagadome, S., Oida, T., Hayashi, Y., Ko, J.S.: Adsorption and micelle formation of mixed surfactant systems in water II: A combination of cationic gemini-type surfactant with MEGA-10. J. Oleo Sci. 52, 449–461 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andleeb Z. Naqvi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2015_338_MOESM1_ESM.docx

Supplementary material 1 (DOCX 750 kb). Supporting information contains the NMR spectra for asymmetric surfactant zwitterionic surfactants and the experimental results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, S., Naqvi, A.Z., Ansari, W.H. et al. Effect of Asymmetric Dimeric Zwitterionic Surfactants on Micellization Behavior of Amphiphilic Drugs. J Solution Chem 44, 1292–1309 (2015). https://doi.org/10.1007/s10953-015-0338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0338-9

Keywords

Navigation