Skip to main content
Log in

Mixed Micellization Between an Antidepressant Drug Imipramine Hydrochloride and Surfactants (Conventional/Gemini) at Different Temperatures and Compositions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The micellization behavior of an amphiphilic antidepressant drug imipramine hydrochloride (IMP) in the presence of a conventional (CTAB) and three gemini (16-s-16, s = 4–6) cationic surfactants has been studied at different temperatures and compositions by conductometry. The experimental and ideal critical micelle concentrations, cmc and cmc id, values indicate mixed micelle formation between the components. The micellar mole fractions of surfactants (\( X_{1}^{\text{Rub}} \), \( X_{1}^{\text{M}} \), \( X_{1}^{\text{Rod}} \) and \( X_{1}^{\text{id}} \)), calculated using different theoretical models, show greater contribution from the surfactants. The interaction parameter (β) is negative at all temperatures and at all compositions indicating attractive interactions. Activity coefficients (f 1 and f 2) are always less than unity reflecting nonideality in the systems. Thermodynamic parameters which were also evaluated suggest dehydration of the hydrophobic part of the drug at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetshoy, V., Torchilin, V.P., Langer, R.: Biodegradable long-circulating polymeric particles. Science 263, 1600–1603 (1994)

    Article  CAS  Google Scholar 

  2. Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73, 137–172 (2001)

    Article  CAS  Google Scholar 

  3. Holmberg, K. (ed.): Novel Surfactants, Preparation, Applications, and Biodegradability. Surfactant Science Series, vol. 74. Marcel Dekker, New York (1998)

    Google Scholar 

  4. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97, 205–253 (2002)

    Article  CAS  Google Scholar 

  5. Ryhanen, S.J., Saily, M.J., Paukku, T., Borocci, S., Mancini, G., Holopainen, J.M., Kinnunen, P.K.J.: Surface charge density determines the efficiency of cationic gemini surfactant based lipofection. Biophys. J. 84, 578–587 (2003)

    Article  CAS  Google Scholar 

  6. Almeida, J.A.S., Faneca, H., Carvalho, R.A., Marques, E.F., Pais, A.A.C.C.: Dicationic alkylammonium bromide gemini surfactants. Membrane perturbation and skin irritation. PLoS One 11, e26965 (2011)

    Article  Google Scholar 

  7. Schreier, S., Malheiros, S.V.P., de Paula, E.: Surface active drug: self-association and interaction with membrane and surfactants. Physiochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)

    Article  CAS  Google Scholar 

  8. Allen, T.M., Hansen, C.B., Menenez, D.E.L.: Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev. 16, 267–284 (1995)

    Article  CAS  Google Scholar 

  9. Canto, G.S., Dalmora, S.L., Oliveira, A.G.: Piroxicam encapsulated in liposomes: characterization and in vivo evaluation of topical anti-inflammatory effect. Drug Dev. Ind. Pharm. 25, 1235–1239 (1999)

    Article  CAS  Google Scholar 

  10. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15–308.15 K. J. Phys. Chem. B 114, 6354–6364 (2010)

    Article  CAS  Google Scholar 

  11. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and gemini) at 293.15 K to 308.15 K: Composition, interaction and stability of the aggregates. J. Colloid Interface Sci. 354, 700–708 (2011)

    Article  CAS  Google Scholar 

  12. Kabir-ud-Din, Rub, M.A., Naqvi, A.Z.: Micellization of mixtures of amphiphilic drugs and cationic surfactants: A detailed study. Colloid Surf A 92, 16–24 (2012)

    Article  CAS  Google Scholar 

  13. Rub, M.A., Asiri, A.M., Naqvi, A.Z., Rahman, M.M., Khan, S.B., Kabir-ud-Din: Mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). J. Mol. Liq. 177, 19–25 (2013)

    Article  CAS  Google Scholar 

  14. De, S., Aswal, V.K., Goyal, P.S., Bhattacharya, S.: Role of spacer chain length in dimeric micellar organization. Small angle neutron scattering and fluorescence studies. J. Phys. Chem. 100, 11664–11671 (1996)

    Article  CAS  Google Scholar 

  15. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York (1980)

    Google Scholar 

  16. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)

    Book  Google Scholar 

  17. Attwood, D., Florence, A.T.: Surfactant Systems. Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York (1983)

    Google Scholar 

  18. Mukerjee, P., Mysels, K.J.: Critical Micelle Concentrations of Aqueous Surfactant Systems. NSRDS-NB-36, Washington, DC (1971)

    Google Scholar 

  19. Zana, R., Benrraou, M., Rueff, R.: Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7, 1072–1075 (1991)

    Article  CAS  Google Scholar 

  20. Kabir-ud-Din, Fatma, W., Khatoon, S., Khan, Z.A., Naqvi, A.Z.: Surface and solution properties of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) gemini surfactants in the presence of additives. J. Chem. Eng. Data 53, 2291–2300 (2008)

    Article  CAS  Google Scholar 

  21. Alam, Md.S., Naqvi, A.Z., Kabir-ud-Din, : Surface and micellar properties of some amphiphilic drugs in the presence of additives. J. Chem. Eng. Data 52, 1326–1331 (2007)

    Article  CAS  Google Scholar 

  22. Rodriguez, A., Junquera, E., del Burgo, P., Aicart, E.: Conductometric and spectrofluorimetric characterization of the mixed micelles constituted by dodecyltrimethylammonium bromide and a tricyclic antidepressant drug in aqueous solution. J. Colloid Interface Sci. 269, 476–483 (2008)

    Article  Google Scholar 

  23. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc., Faraday Trans. 1(71), 1327–1334 (1975)

    Article  Google Scholar 

  24. Schick, M.J. (ed.): Nonionic Surfactants: Physical Chemistry. Marcel Dekker, New York (1987)

    Google Scholar 

  25. Mosquera, V., del Rio, J.M., Attwood, D., Garcia, M., Jones, M.N., Prieto, G., Suarez, M.J., Sarmiento, F.: A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J. Colloid Interface Sci. 206, 66–76 (1998)

    Article  CAS  Google Scholar 

  26. Chen, L., Shi-Yow, L., Chiung-Chang, H., En-Ming, C.: Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf. A 135, 175–181 (1998)

    Article  CAS  Google Scholar 

  27. Hunter, R.J.: Foundations of Colloid Science, vol. 1. Oxford University Press, New York (1989)

    Google Scholar 

  28. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry. Marcel Dekker Inc, New York (1989)

    Google Scholar 

  29. Ruiz, C.C., Dias-Lopez, L., Aguiar, J.: Self-assembly of tetradecyltrimethylammonium bromide in glycerol aqueous mixtures: a thermodynamic and structural study. J. Colloid Interface Sci. 305, 293–300 (2007)

    Article  Google Scholar 

  30. Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)

    Article  CAS  Google Scholar 

  31. Lopez Fontan, J.L., Costa, J., Ruso, J.M., Prieto, G., Sarmiento, F.: Electrical conductivities and critical micelle concentrations (determined by the local polynomial regression method) of imipramine and clomipramine hydrochlorides from (283 to 313) K. J. Chem. Eng. Data 49, 1008–1012 (2004)

    Article  CAS  Google Scholar 

  32. Evans, H.C.: Alkyl sulphates. Part I. Critical micelle concentrations of the sodium salts. J. Chem. Soc. 117, 579–587 (1956)

    Article  Google Scholar 

  33. Asakawa, T., Kitano, H., Ohta, A., Miyagishi, S.: Convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Colloid Interface Sci. 242, 284–287 (2001)

    Article  CAS  Google Scholar 

  34. Iijima, H., Kato, T., Soderman, A.: Variation in degree of counterion binding to cesium perfluorooctanoate micelles with surfactant concentration studied by 133Cs and 19F NMR. Langmuir 16, 318–323 (2000)

    Article  CAS  Google Scholar 

  35. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Colloid Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  36. Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)

    Article  CAS  Google Scholar 

  37. Okano, T., Tamura, T., Nanako, T., Ueda, S., Lee, S., Sugihara, G.: Effects of side chain length and degree of counterion binding on micellization of sodium salts of α-myristic acid alkyl esters in water: a thermodynamic study. Langmuir 16, 3777–3783 (2000)

    Article  CAS  Google Scholar 

  38. Clint, J.H.: Surfactant Aggregation. Blackie/Chapman and Hall, New York (1992)

    Book  Google Scholar 

  39. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12, 1208–1211 (1996)

    Article  CAS  Google Scholar 

  40. Taboada, P., Ruso, J.M., Garcia, M., Mosquera, V.: Comparison of the thermodynamic properties of structurally related amphiphilic antidepressants in aqueous solution. Colloid Polym. Sci. 279, 716–720 (2001)

    Article  CAS  Google Scholar 

  41. Taboada, P., Martinez-Landeira, P., Ruso, J.M., Garcia, M., Mosquera, V.: Aggregation energies of some amphiphilic antidepressant drugs. Colloid Surf. A 197, 95–99 (2002)

    Article  CAS  Google Scholar 

  42. Prasad, M., Moulik, S.P., Palepu, R.: Self-aggregation of binary mixtures of alkyltriphenylphosphonium bromides: a critical assessment in favor of more than one kind of micelle formation. J. Colloid Interface Sci. 284, 658–666 (2005)

    Article  CAS  Google Scholar 

  43. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  44. Kresheck, G.C.: In: Franks, F. (ed.) Water. A Comprehensive Treatise. Plenum, New York (1995)

    Google Scholar 

  45. Nemethy, G., Scheraga, H.A.: The structure of water and hydrophobic bonding in proteins. II. A model for the thermodynamic properties of aqueous solutions of hydrocarbons. J. Chem. Phys. 36, 3401–3417 (1962)

    Article  CAS  Google Scholar 

  46. Stainsby, G., Alexander, A.E.: Studies of soap solutions. Part II.—Factors influencing aggregation in soap solutions. Trans. Faraday Soc. 46, 587–597 (1950)

    Article  CAS  Google Scholar 

  47. Aranow, R.H., Witten, L.: The environmental influences on the behavior of long chain molecules. J. Phys. Chem. 64, 1643–1648 (1960)

    Article  CAS  Google Scholar 

  48. Rubingh, D.N.: In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants, vol. 1. Plenum, New York (1979)

    Google Scholar 

  49. Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)

    Article  CAS  Google Scholar 

  50. Rodenas, V., Valiente, M., Villafruela, M.S.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. B 103, 4549–4554 (1999)

    Article  CAS  Google Scholar 

  51. Lange, H., Beck, K.H.: Zur mizellbildung in mischl¨osungen homologer und nichthomologer tenside. Kolloid Z. Z. Polym. 251, 424 (1973)

    Article  CAS  Google Scholar 

  52. Hua, X.Y., Rosen, M.J.: Synergism in binary mixtures of surfactants: I. Theoretical analysis. J. Colloid Interface Sci. 90, 212–219 (1982)

    Article  CAS  Google Scholar 

  53. Hoffmann, H., Possnecker, G.: The mixing behavior of surfactants. Langmuir 10, 381–389 (1994)

    Article  CAS  Google Scholar 

  54. Maeda, H.A.: A thermodynamic analysis of charged mixed micelles in water. J. Phys. Chem. B 109, 15933–15940 (2005)

    Article  CAS  Google Scholar 

  55. Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloidal entities. J. Chem. Soc. Faraday Trans. 87, 3529–3535 (1991)

    Article  CAS  Google Scholar 

  56. Puvvada, S., Blankschtein, D.: Thermodynamic description of micellization, phase behavior, and phase separation of aqueous solutions of surfactant mixtures. J. Phys. Chem. 96, 5567–5579 (1992)

    Article  CAS  Google Scholar 

  57. Puvvada, S., Blankschtein, D.: Theoretical and experimental investigations of micellar properties of aqueous solutions containing binary mixtures of nonionic surfactants. J. Phys. Chem. 96, 5579–5592 (1992)

    Article  CAS  Google Scholar 

  58. Sarmoria, C., Puvvada, S., Blankschtein, D.: Prediction of critical micelle concentrations of nonideal binary surfactant mixtures. Langmuir 8, 2690–2697 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, India for research Grant (No. 01(2208)/08/EMR–II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andleeb Z. Naqvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir-ud-Din, Rub, M.A. & Naqvi, A.Z. Mixed Micellization Between an Antidepressant Drug Imipramine Hydrochloride and Surfactants (Conventional/Gemini) at Different Temperatures and Compositions. J Solution Chem 44, 2448–2469 (2015). https://doi.org/10.1007/s10953-015-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0412-3

Keywords

Navigation