Skip to main content
Log in

Experimental Study and Modeling of the Refractive Indices in Binary and Ternary Mixtures of Water with Methanol, Ethanol and Propan-1-ol at 293.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Refractive indices of ternary mixtures of water + methanol + (ethanol or propan-1-ol), (water or methanol) + ethanol + propan-1-ol and their binary mixtures have been measured at 293.15 K and at atmospheric pressure over the whole composition range. The refractive index deviations were calculated and fitted to the Redlich–Kister equation for binary mixtures, and the Cibulka equation for ternary mixtures. Furthermore, we demonstrate that the refractive index of the associated ternary mixtures can be estimated with relative errors from 0.036 to 0.861 % by using the several mixing rules and the refractive indices of the corresponding pure components. The behavior of refractive indices is associated with solvent–solvent interactions and the formation of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sechenyh, V.V., Legros, J., Shevtsova, V.: Experimental and predicted refractive index properties in ternary mixtures of associated liquids. J. Chem. Thermodyn. 43, 1700–1707 (2011)

    Article  CAS  Google Scholar 

  2. Nakata, M., Sakurai, M.: Refractive index and excess volume for binary liquid mixtures. Part 1. Analyses of new and old data for binary mixtures. J. Chem. Soc. Faraday Trans. 183, 2449–2457 (1987)

    Article  Google Scholar 

  3. Tripathi, R.C.: Relation between index of refraction and surface tension. J. Indian Chem. Soc. 18, 411–427 (1941)

    CAS  Google Scholar 

  4. Zhelezny, V., Sechenyh, V., Nikulina, A.: A new scaling principles—quantitative structure property relationship model (SP-QSPR) for predicting the physicochemical properties of substances at the saturation line. J. Chem. Eng. Data 59, 485–493 (2014)

    Article  CAS  Google Scholar 

  5. Heller, W.: Remarks on refractive index mixture rules. J. Phys. Chem. 69, 1123–1129 (1965)

    Article  CAS  Google Scholar 

  6. Teodorescu, M., Secuianu, C.: Refractive indices measurement and correlation for selected binary systems of various polarities at 25 & #xB0;C. J. Solution Chem. 42, 1912–1934 (2013)

    Article  CAS  Google Scholar 

  7. Vuksanović, J.M., Bajić, D.M., Ivaniš, G.R., Živković, E.M., Radović, I.R., Šerbanović, S.P., Kijevčanin, M.L.: Prediction of excess molar volumes of selected binary mixtures from refractive index data. J. Serb. Chem. Soc. 79, 707–718 (2014)

    Article  Google Scholar 

  8. Radović, I.R., Kijevčanin, M.L., Gabrijel, M.Z., Šerbanović, S.P., Djordjević, B.D.: Prediction of excess molar volumes of binary mixtures of organic compounds from refractive indices. Chem. Pap. 62, 302–312 (2008)

    Google Scholar 

  9. Pérez-Navarro, M., Pera, G., Haro, M., Gascón, I., Lafuente, C.: Refractive indices of the ternary mixtures butanol + n-hexane + 1-chlorobutane. J. Solution Chem. 37, 1499–1510 (2008)

    Article  Google Scholar 

  10. Giner, B., Villares, A., López, M.C., Royo, F.M., Lafuente, C.: Refractive indices and molar refractions for isomeric chlorobutanes with isomeric butanols. Phys. Chem. Liq. 43, 13–23 (2005)

    Article  CAS  Google Scholar 

  11. Baluja, S., Pandaya, N., Kachhadia, N., Solanki, A.: Theoretical evaluation of refractive index in binary liquid mixtures. E-J. Chem. 2, 157–160 (2005)

    Article  Google Scholar 

  12. Parveen, S., Singh, S., Shukla, D., Singh, K.P., Gupta, M., Shukla, J.P.: Molecular interaction study of binary mixtures of THF with methanol and o-cresol—an optical and ultrasonic study. Act. Phys. Polonica A 116, 1011–1017 (2009)

    CAS  Google Scholar 

  13. Sharma, S., Patel, P.B., Patel, R.S., Vora, J.J.: Density and comparative refractive index study on mixing properties of binary liquid mixtures of eucalyptol with hydrocarbons at 303.15, 308.15 and 313.15 K. E-J. Chem. 4, 343–349 (2007)

    Article  CAS  Google Scholar 

  14. Gayol, A., Iglesias, M., Goenaga, J.M., Concha, R.G., Resa, J.M.: Temperature influence on solution properties of ethanol + n-alkane mixtures. J. Mol. Liq. 135, 105–114 (2007)

    Article  CAS  Google Scholar 

  15. Touriño, A., Hervello, M., Moreno, V., Marino, G., Iglesias, M.: Changes of refractive indices in ternary mixtures containing chlorobenzene + n-hexane + (n-heptane or n-octane) at 298.15 K. J. Serb. Chem. Soc. 69, 461–475 (2004)

    Article  Google Scholar 

  16. Sechenyh, V., Legros, J.C., Shevtsova, V.: Measurements of optical properties in binary and ternary mixtures containing cyclohexane, toluene, and methanol. J. Chem. Eng. Data 57, 1036–1043 (2012)

    Article  CAS  Google Scholar 

  17. Sechenyh, V.V., Legros, J.C., Shevtsova, V.: Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane. J. Chem. Thermodyn. 62, 64–68 (2013)

    Article  CAS  Google Scholar 

  18. Sen, D., Kin, M.G.: Excess molar volumes and molar enthalpies in the binary mixtures of x1CH3CHClCH2Cl + x2CH3(CH2) n–1 OH (n = 1 to 4) at T = 298.15 K. Korean J. Chem. Eng. 26, 806–811 (2009)

    Article  CAS  Google Scholar 

  19. Kogan, A., Garti, N.: Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 123–126, 369–385 (2006)

    Article  Google Scholar 

  20. Sanz, L.F., González, J.A., De La Fuente, I.G., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. XI. Densities, viscosities and refractives indices at (293.15–303.15) K for cyclohexylamine + 1-propanol, or +1-butanol systems. J. Mol. Liq. 172, 26–33 (2012)

    Article  CAS  Google Scholar 

  21. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  22. Cibulka, I.: Estimation of excess volume and density of ternary liquid mixtures of non-electrolytes from binary data. Collect. Czech. Chem. Commun. 47, 1414–1419 (1982)

    Article  CAS  Google Scholar 

  23. Lorentz, H.A.: Ueber die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Wied. Ann. 9, 641–665 (1880)

    Article  Google Scholar 

  24. Lorenz, L.V.: Ueber die Refraktion Konstante. Wied. Ann. 11, 70–75 (1880)

    Article  Google Scholar 

  25. Gladstone, J.F., Dale, T.P.: Researches on the refraction, dispersion, and sensitiveness of liquids. Philos. Trans. R. Soc. Lond. 153, 317–343 (1863)

    Article  Google Scholar 

  26. Eykman, J.F.: Recherchesréfractométriquesdefeu. Nat. Verh. VandeHoll. Maatsch. DerWet. TeHaarlem 8, 25–255 (1919)

    Google Scholar 

  27. Kurtz, S.S., Ward, A.L.: The refractive intercept and the specific refraction equation of Newton. I. Development of the refractivity intercept and comparison with specific-refraction equations. J. Franklin Inst. 222, 563–592 (1936)

    Article  CAS  Google Scholar 

  28. Oster, G.: The scattering of light and its applications to chemistry. Chem. Rev. 43, 319–365 (1948)

    Article  CAS  Google Scholar 

  29. Laeter, J.R., Böhlke, J.K., De Bièvre, P., Hidaka, H., Peiser, H.S.: Atomic weights of the elements: reviews 2000 (IUPAC Technical Report). Pure Appl. Chem. 75, 683–800 (2003)

    Article  Google Scholar 

  30. Zaoui-Djelloul-Daouadji, M., Negadi, A., Mokbel, I., Negadi, L.: (Vapor–liquid) equilibria and excess Gibbs free energy functions of (ethanol + glycerol), or (water + glycerol) binary mixtures at several temperatures. J. Chem. Thermodyn. 69, 165–171 (2014)

    Article  CAS  Google Scholar 

  31. Kurnia, K.A., Taib, M.M., Mutalib, M.I.A., Murugesan, A.: Densities, refractive indices and excess molar volumes for binary mixtures of protic ionic liquids with methanol at T = 293.15 to 313.15 K. J. Mol. Liq. 159, 211–219 (2011)

    Article  CAS  Google Scholar 

  32. Fontao, M.J., Iglesias, M.: Effect of temperature on the refractive index of aliphatic hydroxilicmixtures (C2–C3). Int. J. Thermophys. 23, 513–527 (2002)

    Article  CAS  Google Scholar 

  33. Li, X., Xu, G., Wang, Y., Hu, Y.: Density, viscosity, and excess properties for binary mixture of diethylene glycol monoethyl ether + water from 293.15 to 333.15 K at atmospheric pressure. Chin. J. Chem. Eng. 17, 1010–1013 (2009)

    Google Scholar 

  34. Almasi, M., Mousavi, M.: Excess molar volumes of binary mixtures of aliphatic alcohols (C1–C5) with nitromethane over the temperature range 293.15 to 308.15 K: application of the ERAS model and cubic EOS. J. Mol. Liq. 163, 46–52 (2011)

    Article  CAS  Google Scholar 

  35. Koohya, F., Kiani, F., Sharifi, S., Sharifirad, M., Rahmanpour, S.H.: Study on the change of refractive index on mixing, excess molar volume and viscosity deviation for aqueous solution of methanol, ethanol, ethylene glycol, 1-propanol and 1,2,3-propantriol at T = 292.15 K and atmospheric pressure. Res. J. Appl. Scien. Engin. Technol. 4, 3095–3101 (2012)

    Google Scholar 

  36. Jiménez-Riobóo, R.J., Philipp, M., Ramos, M.A., Krüger, J.K.: Concentration and temperature dependence of the refractive index of ethanol–water mixtures: influence of intermolecular interactions. Eur. Phys. J. E 30, 19–26 (2009)

    Article  Google Scholar 

  37. Takamuku, T., Saisho, K., Nozawa, S., Yamaguchi, T.: X-ray diffraction studies on methanol–water, ethanol–water, and 2-propanol–water mixtures at low temperatures. J. Mol. Liq. 119, 133–146 (2005)

    Article  CAS  Google Scholar 

  38. Takamuku, T., Yamaguchi, T., Asato, M., Matsumoto, M., Nishi, N.: Structure of clusters in methanol–water binary solutions studied by mass spectrometry and X-ray diffraction. Z. Naturforsch. 55a, 513–525 (2000)

    Google Scholar 

  39. Pandey, P.K., Pandey, V.K., Awasthi, A., Nain, A.K., Awasthi, A.: Study of intermolecular interactions in binary mixtures of 2-(dimethylamino) ethanol withmethanol and ethanol at various temperatures. Thermochim. Acta 586, 58–65 (2014)

    Article  CAS  Google Scholar 

  40. Nagasaka, M., Mochizuki, K., Leloup, V., Kosugi, N.: Local structures of methanol—water binary solutions studied by soft X-ray absorption spectroscopy. Phys. Chem. B118, 4388–4396 (2014)

    Article  Google Scholar 

  41. Matsumoto, M., Nishi, N., Furusawa, T., Saita, M., Takamuku, T., Yamagami, M.: Structure of clusters in ethanol–water binary solutions studied by mass spectrometry and X-ray diffraction. Bull. Chem. Soc. Jpn 68, 1775–1783 (1995)

    Article  CAS  Google Scholar 

  42. Reis, J.C.R., Lampreia, I.M.S., Santos, A.F.S., Moita, M.L.C.J., Douhéret, G.: Refractive index of liquid mixtures: theory and experiment. ChemPhysChem 11, 3722–3733 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Amado-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Reina, M., Amado-González, E. & Goméz-Jaramillo, W. Experimental Study and Modeling of the Refractive Indices in Binary and Ternary Mixtures of Water with Methanol, Ethanol and Propan-1-ol at 293.15 K. J Solution Chem 44, 206–222 (2015). https://doi.org/10.1007/s10953-015-0305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0305-5

Keywords

Navigation