Skip to main content
Log in

Densities, Refractive Indices, and Derived Properties of Binary Mixtures of Ethanol with Benzene and Pyridine at Various Temperatures Under Atmospheric Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental densities at (293.15, 298.15, 303.15, 308.15, and 313.15) K and refractive indices at 298.15 K are reported for the binary liquid mixtures of ethanol with benzene and pyridine over the entire range of compositions and atmospheric pressure. From these experimental data, the excess molar volumes VE and deviations in molar refractivity ΔR were derived and fitted by the Redlich–Kister polynomial to determine the adjustable fitting parameters and the standard deviations. The number of adjustable parameters to be included in a Redlich–Kister polynomial for fitting the derived properties was optimized with the F-test. VE values are found to be negative over the entire composition range in ethanol + pyridine mixtures, without considerable changes over the temperature range studied. In the ethanol + benzene mixtures, the VE results show an S-shaped composition dependence, and the temperature contribution was found to be very important. The variation of VE with composition and temperature has been interpreted in terms of molecular interactions between the components of the mixture and structural effects. ΔR values are found to be negative for both mixtures with a minimum located between 0.45 and 0.5 volume fractions of ethanol. Furthermore, several theoretical and empirical mixing rules were applied to predict refractive indices of mixtures in order to test their validity for the present systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-G. Franck, J.W. Stadelhofer, Industrial Aromatic Chemistry (Springer, Berlin, 1988), pp. 132–235

    Book  Google Scholar 

  2. S. Shimizu, N. Watanabe, T. Kataoka, T. Shoji, N. Abe, S. Morishita, H. Ichimura, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 30, ed. by B. Elvers, S. Hawkins, G. Schulz (Wiley, Weinheim, 2012), p. 557

    Google Scholar 

  3. Y. Sekine, K. Urasaki, S. Asai, M. Matsukata, E. Kikuchi, S. Kado, Chem. Commun. (2005). https://doi.org/10.1039/B412552E

    Article  Google Scholar 

  4. B.A. Raich, H.C. Foley, Ind. Eng. Chem. Res. 37, 3888 (1998)

    Article  Google Scholar 

  5. J.A. Joule, K. Mills, Heterocyclic Chemistry, 5th edn. (Wiley-Blackwell, West Sussex, 2010), pp. 5–18

    Google Scholar 

  6. G.P. Dubey, M. Sharma, N. Dubey, J. Chem. Thermodyn. 40, 309 (2008)

    Article  Google Scholar 

  7. A. Ali, M. Tariq, F. Nabi, Shahjahan. Chinese J. Chem. 26, 2009 (2008)

    Article  Google Scholar 

  8. S. Thirumaran, D. Priya, Indian J. Pure Appl. Phys. 51, 413 (2013)

    Google Scholar 

  9. A. Ali, A.K. Nain, B. Lal, D. Chand, Int. J. Thermophys. 25, 1835 (2004)

    Article  ADS  Google Scholar 

  10. S.P. Šerbanović, M.L. Kijevčanin, I.R. Radović, B.D. Djordjević, Fluid Phase Equilib. 239, 69 (2006)

    Article  Google Scholar 

  11. R. N. Miller, US patent no. 4617105, 1986

  12. W. Wang, F. Wang, R. Ran, H.J. Park, D.W. Jung, Ch. Kwak, Z. Shao, J. Power Sources 265, 20 (2014)

    Article  ADS  Google Scholar 

  13. R. Gonzalez-Olmos, M. Iglesias, S. Mattedi, Phys. Chem. Liq. 48, 337 (2010)

    Article  Google Scholar 

  14. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  15. K.-J. Han, J.-H. Oh, S.-J. Park, J. Ind. Eng. Chem. 13, 360 (2007)

    Google Scholar 

  16. H.-J. Noh, S.-J. Park, S.-J. In, J. Ind. Eng. Chem. 16, 200 (2010)

    Article  Google Scholar 

  17. I.R. Grgurić, S.P. Šerbanović, M.L. Kijevčanin, A.Ž. Tasić, B.D. Djordjević, Thermochim. Acta 412, 25 (2004)

    Article  Google Scholar 

  18. R. Tanaka, S. Toyama, J. Chem. Eng. Data 42, 871 (1997)

    Article  Google Scholar 

  19. T.J.V. Findlay, J.L. Copp, Trans. Faraday Soc. 65, 1463 (1969)

    Article  Google Scholar 

  20. E.D. Dikio, S.M. Nelana, D.A. Isabirye, E.E. Ebenso, Int. J. Electrochem. Sci. 7, 11101 (2012)

    Google Scholar 

  21. K.N. Marsh, C. Burfitt, J. Chem. Thermodyn. 7, 955 (1975)

    Article  Google Scholar 

  22. P.P. Singh, B.R. Sharma, P.C. Chopra, J. Chem. Thermodyn. 12, 1193 (1980)

    Article  Google Scholar 

  23. J.G. Albright, A.V.J. Edge, R. Mills, J. Chem. Soc. Faraday Trans. 79, 1327 (1983)

    Article  Google Scholar 

  24. R.S. Myers, H.L. Clever, J. Chem. Thermodyn. 6, 949 (1974)

    Article  Google Scholar 

  25. F. Aliaj, N. Syla, A. Bytyqi-Damoni, AKTET J. Inst. Alb-Shkenca 9, 36 (2016)

    Google Scholar 

  26. F. Aliaj, A. Bytyqi-Damoni, N. Syla, in AIP Conf. Proc. 1722, ed. by B. Akkuş, Y. Öktem, L. Ş. Yalçin, R. B. Ç. Mutlu, G. S. Doğan (AIP Publishing, 2016), p. 290015-1

  27. H.A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. (B. G. Teubner, Leipzig, 1916)

    MATH  Google Scholar 

  28. G. Oster, Chem. Rev. 43, 319 (1948)

    Article  Google Scholar 

  29. W. Heller, J. Phys. Chem. 69, 1123 (1965)

    Article  Google Scholar 

  30. W. Heller, Phys. Rev. 68, 5 (1945)

    Article  ADS  Google Scholar 

  31. R. Mehra, J. Chem. Sci. 115, 147 (2003)

    Article  Google Scholar 

  32. A.Ž. Tasić, B.D. Djordjević, D.K. Grozdanić, N. Radojković, J. Chem. Eng. Data 37, 310 (1992)

    Article  Google Scholar 

  33. J.F. Eykman, Recl. Trav. Chim. Pays-Bas 14, 185 (1895)

    Article  Google Scholar 

  34. M.E. Wieser et al., Pure Appl. Chem. 85, 1047 (2013)

    Article  Google Scholar 

  35. B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST Technical Note 1297, 1994 Edition). http://physics.nist.gov/TN1297. Accessed 16 Feb 2020

  36. M.S. Bakshi, G. Kaur, J. Chem. Eng. Data 42, 298 (1997)

    Article  Google Scholar 

  37. Y.-W. Sheu, C.-H. Tu, J. Chem. Eng. Data 51, 1634 (2006)

    Article  Google Scholar 

  38. M.L. Kijevčanin, E.M. Živković, B.D. Djordjević, I.R. Radović, J. Jovanović, S.P. Šerbanović, J. Chem. Thermodyn. 56, 49 (2013)

    Article  Google Scholar 

  39. S. Singh, S. Parveen, D. Shukla, M. Gupta, J.P. Shukla, Acta Phys. Pol. A 111, 847 (2007)

    Article  ADS  Google Scholar 

  40. V. Aniya, A. Kumari, R. Reddy, B. Satyavathi, J. Solut. Chem. 46, 1177 (2017)

    Article  Google Scholar 

  41. W.E. Acree Jr., Thermodynamic Properties of Nonelectrolyte Solutions (Academic Press Inc., Orlando, 1984), pp. 62–73

    Book  Google Scholar 

  42. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, New York, 2003), pp. 194–217

    Google Scholar 

  43. M. Tjahjono, M. Garland, J. Solut. Chem. 36, 221 (2007)

    Article  Google Scholar 

  44. Y. Miyano, W. Hayduk, J. Chem. Eng. Data 38, 277 (1993)

    Article  Google Scholar 

  45. A.Ž. Tasić, D.K. Grozdanić, B.D. Djordjević, S.P. Serbanović, N. Radojković, J. Chem. Eng. Data 40, 586 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim Syla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliaj, F., Syla, N., Kurtishaj, A. et al. Densities, Refractive Indices, and Derived Properties of Binary Mixtures of Ethanol with Benzene and Pyridine at Various Temperatures Under Atmospheric Pressure. Int J Thermophys 41, 49 (2020). https://doi.org/10.1007/s10765-020-02632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02632-9

Keywords

Navigation