Skip to main content
Log in

The protonation equilibria of selected glycine dipeptides in ethanol–water mixture: solvent composition effect

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Knowledge of the protonation constants of small dipeptide is important, interesting and necessary for complete understanding of the physiochemical behavior of dipeptide. In this study, the protonation constants of some aliphatic dipeptides (Gly–Gly, Gly–Val, Gly–Leu, Gly–Thr, Gly–Phe and Gly–Met) were studied in water and ethanol–water mixtures [20% ethanol–80% water, 40% ethanol–60% water, 60% ethanol–40% water, (v/v)] at 25 ± 0.1°C under nitrogen atmosphere and ionic strength at 0.10 mol dm−3 by potentiometry. The constants of the systems were calculated by using BEST computer program, and distribution species diagrams were produced using the SPE computer program. The protonation constants were influenced by changes in solvent composition, and their variations were discussed in terms of solvent and structural properties. The concentration distribution of the various species in ethanol–water mixtures was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aihara A, Nakanura Y, Nishida Y, Noda K (1986) Electrochemical behavior of copper (II)-dipeptide complexes in mixed solvent. Inorganica Chim Acta 124:169–173

    Article  CAS  Google Scholar 

  • Arroyo M, Torres-Guzman R, Mata I, Castillon MP, Acebal C (2000) Prediction of penicillin V acylase stability in water-organic co-solvent monophasic systems as a function of solvent composition. Enzyme Microb Technol 27:122–126

    Article  PubMed  CAS  Google Scholar 

  • Brookes G, Pettit D (1975) Thermodynamic of complex formation between hydrogen, copper(II), and nickel(II) ions dipeptides containing non-co-ordinating substituent groups. J Chem Soc Dalton Trans 2106–2111

  • Canel E, Gültepe A, Doğan A, Kılıç E (2006) The determination of protonation constants of some amino acids and their esters by potentiometry in different media. J Solut Chem 35:5–19

    Article  CAS  Google Scholar 

  • Chakraborty D, Bhattacharya PK (1990) Intramolecular interligand interactions in Cu(II) ternary complexes involving dipeptides and amino acids. J Inorg Biochem 39:1–8

    Article  CAS  Google Scholar 

  • Chattopadhyay AK, Lahiri SC (1982) Studies on the protonation constants and salvation of amino acids in ethanol and water mixtures. Electrochim Acta 27:269–272

    Article  CAS  Google Scholar 

  • Crosby J, Stone R, Lienhard GE (1970) Mechanisms of thiamine-catalyzed reactions. Decarboxylation of 2-(1-carboxy-1-hydroxyetyl)-3,4-dimethylthiazolium chloride. J Am Chem Soc 92:2891–2900

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Cruz MS, Diaz-Cruz JM, Mendieta J, Tauler R, Esteban M (2000) Soft-and hardmodeling approaches for the determination of stability constants of metal-peptide systems by voltametry. Anal Biochem 279:189–201

    Article  PubMed  CAS  Google Scholar 

  • Doğan A, Köseoğlu F, Kılıç E (2001) The stability constants of copper(II) complexes with some α-amino acids in dioxan-water mixtures. Anal Biochem 295:237–239

    Article  PubMed  CAS  Google Scholar 

  • Doğan A, Köseoğlu F, Kılıç E (2002) Studies on the macroscopic protonation constants of some α-amino acids in ethanol–water mixtures. Anal Biochem 309:75–78

    Article  PubMed  CAS  Google Scholar 

  • Doğan A, Köseoğlu F, Kılıç E (2002) Potentiometric studies on the protonation constants and solvation of some α-amino acid methyl- and ethyl esters in ethanol–water mixtures. Indian J Chem 41A:960–962

    Google Scholar 

  • Facchin C, Kremer E, Baran EJ, Castellano EE, Piro EO, Ellena J, Costa-Filh AJ, Torre MH (2006) Structral characterization of a series of new Cu–dipeptide complexes in solid state and in solution. Polyhedron 25: 2597–2604

    Article  CAS  Google Scholar 

  • Facchin C, Torre MH, Kremer E, Piro EO, Castellano EE, Baran EJ (2002) Synthesis and characterization of three new dipeptide complexes. J Inorg Biochem 89:174–180

    Article  PubMed  CAS  Google Scholar 

  • Farrell N (1989) Transition metal complexes as drugs and chemotherapeutic agents. Kluwer, Dordrecht

    Google Scholar 

  • Fereeman HC, Healy MJ, Scudder ML (1977) A crystallographic study of the structure of glycyl-L-alaninatocopper(II) hydrate and the conformations of copper(II) dipeptide complexes. J Biol Chem 252(24):8840–8847

    Google Scholar 

  • Fonteh AN, Harrington RJ, Harrington MG (2007) Quantification of free amino acids and dipeptides using isotope dilution liquid chromatography and electrospray ionization tandem mass spectrometry. Amino Acids 32:203–212

    Article  PubMed  CAS  Google Scholar 

  • Gergely A, Farkas E (1982) Studies on transition-metal–peptide complexes. J Chem Soc Dalton Trans 381–395

  • Gergely A, Nagypal I (1977) Studies on transition metal–peptide complexes. Part1. Equilibrium and thermodynamical study of the copper-(II)complexes of glycylglycine,glycly-dl-alanine, dl-alanylglycine, and dl-alanyl-dl-alanine. J Chem Soc Dalton Trans 1104–1111

  • Gooding JJ, Hibbert DB, Yang W (2001) Electrochemical ions sensors. Exploiting amino acids and peptides as recognitions elements. Sensors 1:75–90

    Article  CAS  Google Scholar 

  • Gran G (1952) Determination of the equivalent point in potentiometric titrations. Part II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Ivanova BB, Kolev T, Zareva SY (2006) Solid-state IR-LD spectroscopic and theoretical analysis of glycine-containing peptides and their hydrochlorides. Biopolymers 82:587–596

    Article  PubMed  CAS  Google Scholar 

  • Kılıç E, Köseoğlu F Başgut Ö (1994) Protonation constants of some pyridine derivatives in ethanol–water mixtures. Anal Chem Acta 294:215

    Article  Google Scholar 

  • Kılyen M, Forgo P, Lakatos A, Dombi G, Kiss T, Kotsakis N, Salifoglou A (2003) Interaction of Al(III) with the peptides AspAsp and AspAspAsp. J Inorg Biochem 94:207–213

    Article  PubMed  CAS  Google Scholar 

  • Koleva BB, Kolev TS, Spiteller M (2006) Structral and spectroscopic analysis of hydrogensquarates of glycine-containing tripeptides. Biopolymers 83:498–507

    Article  PubMed  CAS  Google Scholar 

  • Koleva BB, Kolev TM, Spiteller M (2007a) Spectroscopic and structural elucidation of alanyl-containing dipeptides and their hydrogensquarates. J Mol Struct (in press)

  • Koleva BB, Kolev TS, Zareva SY, Spiteller M (2007b) The dipeptide alanylphenylalanine (H-Ala-Phe-OH)-protonation and coordination ability with Au(III). J Mol Struct 831:165–173

    Article  CAS  Google Scholar 

  • Kozlowski H, Bal W, Dyba M, Kowalil-Jankowska T (1999) Specific structure–stability relations in metallopeptides. Coord Chem Rev 184:319–346

    Article  CAS  Google Scholar 

  • Köseoğlu F, Kılıç E. Doğan A (2000) Studies on the protonation constants and solvation of α-amino acids in dioxan–water mixture. Anal Biochem 277:243–246

    Article  PubMed  CAS  Google Scholar 

  • Lomozik L (1984) A study of complex equilibria of phenylglycine with nickel(II), copper(II) and zinc(II) in water and water–methanol solution. Monatsh Chem 115:921–926

    Article  CAS  Google Scholar 

  • Lyons AQ, Pettit LD (1985) Formation constants of silver (I) complexes of some sulphur-containing dipeptides and valylvaline. J Chem Soc Dalton Trans 102:2305–2308

    Google Scholar 

  • Marcus Y (1984) The effectivity of solvents as electron pair donors. J Solut Chem 13:599–624

    Article  CAS  Google Scholar 

  • Marcus Y (2001) Preferential solvation in mixed solvents X. Completely miscible aqueous co-solvent binary mixtures at 298.15K. Monatsh Chem 132:1387–1411

    CAS  Google Scholar 

  • Marcus Y (2005) The standard partial molar volumes of ions in solution. Part 3. volumes in solvent mixtures where preferential solvation takes. J Solut Chem 34:317–331

    Article  CAS  Google Scholar 

  • Martell AE, Motekaitis RJ (1988) The determination and use of stability constants. VCH, Weinheim

    Google Scholar 

  • Martell AE, Smith RM (1974) Critical stability constants. Plenum, New York

    Google Scholar 

  • Meloun M, Havel J, Högfelt H (1988) Computation of solution equilibria. Wiley, New York

    Google Scholar 

  • Mendieta J, Diaz-Cruz MS, Tauler R, Esteban M (1996) Application of multivariate curve resolution to voltametric data. II. Study of metal-binding properties of the peptides. Anal Biochem 240:134–141

    Article  PubMed  CAS  Google Scholar 

  • Nishi N, Takahashi S, Matsumoto M, Tanaka A, Muraya K, Taramuku T, Yamaguchi T (1995) Hydrogen-bonded cluster formation and hydrophobic solute association in aqueous solutions of ethanol. J Phys Chem 99: 462–468

    Article  CAS  Google Scholar 

  • Perrin DD, Armerega WLF (1991) Purification of laboratory chemicals. Pergamon, Elmsford, New York

    Google Scholar 

  • Rossotti H (1978) The study of ionic equilibria. Longman, London

    Google Scholar 

  • Sigel H (1975) Ternary complexes in solution. Inorg Chem 1415:35–1540

    Google Scholar 

  • Sigel H (ed) (1973) Metal ions in biological systems. Marcel Dekker, New York, vol 2

  • Sigel H, Martin RB (1982) Coordination properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82:385–426

    Article  CAS  Google Scholar 

  • Varnagy K, Süli-Vargha H, Champay A, Sanna D, Micerra G, Sovago I (2004) Acid-base properties and copper(II)complexes of dipeptides containing histidine and additional chelating bis(imidazol-20yl) residues. J Inorg Biochem 98:24–32

    Article  PubMed  CAS  Google Scholar 

  • Woolley EM, Hukot DG, Hepler LG (1970) Ionization constant for water in aqueous organics mixture. J Phys Chem 74:3908–3913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Doğan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doğan, A., Özel, A.D. & Kılıç, E. The protonation equilibria of selected glycine dipeptides in ethanol–water mixture: solvent composition effect. Amino Acids 36, 373–379 (2009). https://doi.org/10.1007/s00726-008-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0054-5

Keywords

Navigation