Skip to main content
Log in

An exact extended formulation for the unrelated parallel machine total weighted completion time problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

The plethora of research on \(\mathcal {NP}\)-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted to the identical parallel machine scheduling environment. In this context, the main contribution of this work is to recognize and prove that a particular preemptive relaxation for the problem of minimizing the total weighted completion time (TWCT) on a set of unrelated parallel machines naturally admits a non-preemptive optimal solution and gives rise to an exact mixed integer linear programming formulation of the problem. Furthermore, we exploit the structural properties of TWCT and attain a very fast and scalable exact Benders decomposition-based algorithm for solving this formulation. Computationally, our approach holds great promise and may even be embedded into iterative algorithms for more complex shop scheduling problems as instances with up to 1000 jobs and 8 machines are solved to optimality within a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azizoglu, M., & Kirca, O. (1999a). On the minimization of total weighted flow time with identical and uniform parallel machines. European Journal of Operational Research, 113(1), 91–100.

    Article  Google Scholar 

  • Azizoglu, M., & Kirca, O. (1999b). Scheduling jobs on unrelated parallel machines to minimize regular total cost functions. IIE Transactions, 31(2), 153–159.

    Google Scholar 

  • Barnes, J. W., & Brennan, J. (1977). An improved algorithm for scheduling jobs on identical machines. AIIE Transactions, 9(1), 25–31.

    Article  Google Scholar 

  • Belouadah, H., & Potts, C. N. (1994). Scheduling identical parallel machines to minimize total weighted completion time. Discrete Applied Mathematics, 48(3), 201–218.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Biskup, D., Herrmann, J., & Gupta, J. N. (2008). Scheduling identical parallel machines to minimize total tardiness. International Journal of Production Economics, 115(1), 134–142.

    Article  Google Scholar 

  • Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: from theory to applications. New York: Springer.

    Google Scholar 

  • Bruno, J., Coffman, E. G, Jr., & Sethi, R. (1974). Scheduling independent tasks to reduce mean finishing time. Communications of the ACM, 17(7), 382–387.

    Article  Google Scholar 

  • Bülbül, K., Kaminsky, P., & Yano, C. (2007). Preemption in single machine earliness/tardiness scheduling. Journal of Scheduling, 10(4–5), 271–292.

    Article  Google Scholar 

  • Burkard, R., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Chekuri, C., & Khanna, S. (2004). Approximation algorithms for minimizing average weighted completion time. In J. Y. Leung (Ed.), Handbook of scheduling: algorithms, models, and performance analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Chen, Z.-L., & Powell, W. B. (1999). Solving parallel machine scheduling problems by column generation. INFORMS Journal on Computing, 11(1), 78–94.

    Article  Google Scholar 

  • Cheng, T., & Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271–292.

    Article  Google Scholar 

  • Detienne, B., Dauzère-Pérès, S., & Yugma, C. (2011). Scheduling jobs on parallel machines to minimize a regular step total cost function. Journal of Scheduling, 14, 523–538.

    Article  Google Scholar 

  • Dyer, M., & Wolsey, L. (1990). Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Mathematics, 26(2–3), 255–270.

    Article  Google Scholar 

  • Elmaghraby, S. E., & Park, S. H. (1974). Scheduling jobs on a number of identical machines. AIIE Transactions, 6(1), 1–13.

    Article  Google Scholar 

  • Fischetti, M., Salvagnin, D., & Zanette, A. (2010). A note on the selection of Benders’ cuts. Mathematical Programming, 124(1–2), 175–182.

    Article  Google Scholar 

  • Goemans, M. X., Queyranne, M., Schulz, A. S., Skutella, M., & Wang, Y. (2002). Single machine scheduling with release dates. SIAM Journal on Discrete Mathematics, 15(2), 165–192.

    Article  Google Scholar 

  • Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A., & Hammer, P. L. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In P. L. Hammer & B. Korte (Eds.), Discrete optimization II (Vol. 5, pp. 287–326)., Annals of discrete mathematics New York: Elsevier.

    Google Scholar 

  • IBM ILOG CPLEX (2012). IBM ILOG CPLEX Optimization Studio 12.5 Information Center. Retrieved 08 April 2014 from http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp.

  • Kedad-Sidhoum, S., Solis, Y. R., & Sourd, F. (2008). Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates. European Journal of Operational Research, 189(3), 1305–1316.

    Article  Google Scholar 

  • Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource allocation and sequencing problems. Management Science, 16(1), 77–84.

    Article  Google Scholar 

  • Lee, C.-Y., & Uzsoy, R. (1992). A new dynamic programming algorithm for the parallel machines total weighted completion time problem. Operations Research Letters, 11(2), 73–75.

    Article  Google Scholar 

  • Li, K., & Yang, S.-L. (2009). Non-identical parallel-machine scheduling research with minimizing total weighted completion times: Models, relaxations and algorithms. Applied Mathematical Modelling, 33(4), 2145–2158.

    Article  Google Scholar 

  • Lin, Y., Pfund, M., & Fowler, J. (2011). Heuristics for minimizing regular performance measures in unrelated parallel machine scheduling problems. Computers and Operations Research, 38(6), 901–916.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29(3), 464–484.

    Article  Google Scholar 

  • Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia Pacific Journal of Operational Research, 18(2), 193–242.

  • Nessah, R., Yalaoui, F., & Chu, C. (2008). A branch-and-bound algorithm to minimize total weighted completion time on identical parallel machines with job release dates. Computers & Operations Research, 35(4), 1176–1190.

    Article  Google Scholar 

  • Pan, Y., & Shi, L. (2007). On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems. Mathematical Programming, 110(3), 543–559.

  • Pinedo, M. (2008). Scheduling: theory, algorithms, and systems (3rd ed.). New York: Springer.

    Google Scholar 

  • Plateau, M.-C., & Rios-Solis, Y. A. (2010). Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations. European Journal of Operational Research, 201(3), 729–736.

    Article  Google Scholar 

  • Posner, M. E. (1985). Minimizing weighted completion times with deadlines. Operations Research, 33(3), 562–574.

    Article  Google Scholar 

  • Rodriguez, F., Blum, C., García-Martínez, C., & Lozano, M. (2012). GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times. Annals of Operations Research, 201(1), 383–401.

    Article  Google Scholar 

  • Rodriguez, F. J., Lozano, M., Blum, C., & García-Martínez, C. (2013). An iterated greedy algorithm for the large-scale unrelated parallel machines scheduling problem. Computers & Operations Research, 40(7), 1829–1841.

    Article  Google Scholar 

  • Rubin, P. (2011). Benders decomposition then and now. Retrieved 24 April 2013 from http://orinanobworld.blogspot.com/2011/10/benders-decomposition-then-and-now.html.

  • Sarin, S. C., Ahn, S., & Bishop, A. B. (1988). An improved branching scheme for the branch and bound procedure of scheduling n jobs on m parallel machines to minimize total weighted flowtime. International Journal of Production Research, 26(7), 1183–1191.

    Article  Google Scholar 

  • Şen, H. & Bülbül, K. (2012). A simple, fast, and effective heuristic for the single-machine total weighted tardiness problem. In E. Demeulemeester & W. Herroelen (Eds.) Proceedings of the 13th International Conference on Project and Scheduling (PMS 2012), pp. 282–286, Leuven: Belgium.

  • Şen, H., & Bülbül, K. (2015). A strong preemptive relaxation for weighted tardiness and earliness/tardiness problems on unrelated parallel machines. INFORMS Journal on Computing, 27(1), 135–150.

    Article  Google Scholar 

  • Shim, S.-O., & Kim, Y.-D. (2007). Minimizing total tardiness in an unrelated parallel-machine scheduling problem. Journal of the Operational Research Society, 58(3), 346–354.

  • Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling. Journal of the ACM (JACM), 48(2), 206–242.

    Article  Google Scholar 

  • Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3(1–2), 59–66.

    Article  Google Scholar 

  • Sourd, F., & Kedad-Sidhoum, S. (2003). The one-machine problem with earliness and tardiness penalties. Journal of Scheduling, 6(6), 533–549.

    Article  Google Scholar 

  • Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Computers & Industrial Engineering, 58(4), 785–800.

    Article  Google Scholar 

  • van den Akker, J. M., Hoogeveen, J. A., & van de Velde, S. L. (1999). Parallel machine scheduling by column generation. Operations Research, 47(6), 862–872.

    Article  Google Scholar 

  • Vredeveld, T., & Hurkens, C. (2002). Experimental comparison of approximation algorithms for scheduling unrelated parallel machines. INFORMS Journal on Computing, 14(2), 175–189.

    Article  Google Scholar 

  • Yalaoui, F., & Chu, C. (2006). New exact method to solve the \({P}m/r_j/\sum _j {C}_j\) schedule problem. International Journal of Production Economics, 100(1), 168–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Bülbül.

Appendices

Appendix: Proof of Proposition 3.1

Proof

The proof consists of two main steps. First, we show that \((\overline{\varvec{u}}{}_k,\overline{\varvec{v}}{}_k)\) is a feasible solution for \(\left( \mathbf {DS_{\varvec{k}}-R}\right) \), i.e., \(\overline{v}{}_{kt} \le {} 0\) for all \(t=1,\ldots {},H_k\) and \(\overline{u}{}_{jk} + \overline{v}{}_{kt} \le {} c_{jkt}\) for all \(j\in {}J_k\) and \(t=1,\ldots {},H_k\). Then, we demonstrate that the objective function value associated with this feasible solution of the dual slave problem is equal to that of the optimal solution of the corresponding primal problem. Our focus in this proof is entirely on \(\left( \mathbf {DS_{\varvec{k}}-R}\right) {}\) for a given machine k, and therefore, every specific job or set of jobs referred to in the following belongs to \(J_k\).

The non-positivity of \(\overline{v}{}_{kt}\) for all \(t=1,\ldots {},H_k\) follows from

$$\begin{aligned} \overline{v}{}_{kt}= & {} \frac{w_{l(t){}}}{p_{l(t){}k}}\left( t - \sum _{i\le l(t){}} p_{ik} \right) - \sum _{i>l(t){}} w_i\\= & {} - r(t){} \frac{w_{l(t){}}}{p_{l(t){}k}} - \sum _{i>l(t){}} w_i \le {} 0, \end{aligned}$$

where

$$\begin{aligned} 0\le r(t){} = \sum _{i\le {}l(t){}} p_{ik} - t \le p_{l(t){}k}-1, \end{aligned}$$
(30)

and the weights and the processing times are strictly positive.

To show that \(\overline{u}{}_{jk} + \overline{v}{}_{kt} \le {} c_{jkt}\) is satisfied for all \(j\in {}J_k\) and \(t=1,\ldots {},H_k\), we substitute the values of \(\overline{u}_{jk}\) and \(\overline{v}_{kt}\) from (27) and \(c_{jkt}\) from (10). The constraint \(\overline{u}{}_{jk} + \overline{v}{}_{kt} \le {} c_{jkt}\) then reduces to

$$\begin{aligned}&\frac{w_j}{p_{jk}}\left( \sum _{i\le j} p_{ik} + \frac{p_{jk}}{2}-\frac{1}{2} \right) \nonumber \\&\qquad + \sum _{i>j} w_i+ \frac{w_{l(t){}}}{p_{l(t){}k}}\left( t - \sum _{i\le l(t){}} p_{ik} \right) - \sum _{i>l(t){}} w_i\nonumber \\&\quad \le {}\frac{w_j}{p_{jk}} \left( t+\frac{p_{jk}}{2}-\frac{1}{2}\right) \nonumber \\ \iff {}&\frac{w_j}{p_{jk}}\left( \sum _{i\le {}j} p_{ik} +\frac{p_{jk}}{2}-\frac{1}{2}\right) \nonumber \\&\qquad + \sum _{i>j} w_i - \frac{w_{l(t){}}}{p_{l(t){}k}}r(t){} - \sum _{i>l(t){}} w_i\nonumber \\&\quad \le {}\frac{w_j}{p_{jk}}\left( \sum _{i\le {}l(t){}} p_{ik} - r(t){} +\frac{p_{jk}}{2}-\frac{1}{2}\right) \end{aligned}$$
(31)

by replacing \(t - \sum _{i\le l(t){}} p_{ik}\) by \(-r(t){}\) and t by \(\sum _{i\le {}l(t){}} p_{ik} - r(t){}\) based on (30). In order to establish the validity of (31), we consider the cases \(j \le {} l(t){}\) and \(j > l(t){}\) separately.

If \(j \le {} l(t){}\), (31) simplifies to

$$\begin{aligned} \frac{w_j}{p_{jk}}\left( - \sum _{j<i\le {}l(t){}} p_{ik} \right) + \sum _{j<i\le {}l(t){}} w_i \le {} r(t){} \left( \frac{w_{l(t){}}}{p_{l(t){}k}} - \frac{w_j}{p_{jk}} \right) . \end{aligned}$$
(32)

Note that \(j \le {} l(t){}\) implies \(\frac{w_j}{p_{jk}} \ge \frac{w_{l(t){}}}{p_{l(t){}k}}\) and leads to \( \left( p_{l(t){}k} - 1\right) \left( \frac{w_{l(t){}}}{p_{l(t){}k}} - \frac{w_j}{p_{jk}} \right) \le {} r(t){} \left( \frac{w_{l(t){}}}{p_{l(t){}k}} - \frac{w_j}{p_{jk}} \right) \) based on (30). Therefore, (32) holds if

$$\begin{aligned}&- \sum _{j<i\le {}l(t){}} p_{ik}\frac{w_j}{p_{jk}} + \sum _{j<i\le {}l(t){}} p_{ik}\frac{w_i}{p_{ik}}\nonumber \\&\quad \le {} \left( p_{l(t){}k} - 1\right) \left( \frac{w_{l(t){}}}{p_{l(t){}k}} - \frac{w_j}{p_{jk}} \right) \end{aligned}$$
(33)
$$\begin{aligned} \iff {}&\sum _{j<i<l(t){}} p_{ik} \left( \frac{w_i}{p_{ik}} - \frac{w_j}{p_{jk}} \right) \nonumber \\&\quad \le {} \frac{w_j}{p_{jk}} - \frac{w_{l(t){}}}{p_{l(t){}k}} \end{aligned}$$
(34)

is satisfied, where the transition from (33) to (34) requires adding \(p_{l(t){}k}\frac{w_j}{p_{jk}}-w_{l(t){}}\) to both sides of (33). The inequality (34) is clearly correct since \(\left( \frac{w_i}{p_{ik}} - \frac{w_j}{p_{jk}} \right) \le {} 0 \) for \(i \ge {} j\) and \(\left( \frac{w_j}{p_{jk}} - \frac{w_{l(t){}}}{p_{l(t){}k}} \right) \ge {} 0\), and this completes the argument for the first case with \(j \le {} l(t){}\).

If \(j > l(t){}\), re-arranging the terms of (31) leads to

$$\begin{aligned} \frac{w_j}{p_{jk}}\left( \sum _{l(t){}<i\le {}j} p_{ik} \right) - \sum _{l(t){}<i\le {}j} w_i \le {} r(t){} \left( \frac{w_{l(t){}}}{p_{l(t){}k}} - \frac{w_j}{p_{jk}} \right) .\qquad \end{aligned}$$
(35)

The inequality \(\frac{w_j}{p_{jk}} \le \frac{w_{l(t){}}}{p_{l(t){}k}}\) follows from \(j > l(t){}\), and we conclude that the right hand side of (35) is non-negative. Therefore, in order to prove that (35) is satisfied it is sufficient to demonstrate the correctness of this relation:

$$\begin{aligned}&\sum _{l(t){}<i\le {}j} p_{ik}\frac{w_j}{p_{jk}} - \sum _{l(t){}<i\le {}j} p_{ik}\frac{w_i}{p_{ik}}\nonumber \\&\quad =\sum _{l(t){}<i\le {}j} p_{ik} \left( \frac{w_j}{p_{jk}} - \frac{w_i}{p_{ik}} \right) \le {} 0. \end{aligned}$$
(36)

The validity of inequality (36) derives from \( \left( \frac{w_j}{p_{jk}} - \frac{w_i}{p_{ik}} \right) \le {} 0 \) for \(i \le {} j\). This yields the correctness of (31) for the second case with \(j > l(t){}\), and \((\overline{\varvec{u}}{}_k,\overline{\varvec{v}}{}_k)\) is certified as a feasible solution of \(\left( \mathbf {DS_{\varvec{k}}-R}\right) \).

As noted before, the optimal schedule of the restricted cut generation subproblem \(\left( \mathbf {TR_{\varvec{k}}-R}\right) \)—the primal problem associated with \(\left( \mathbf {DS_{\varvec{k}}-R}\right) \)—follows the WSPT order for the jobs in \(J_k\). Therefore, the associated optimal objective function value is calculated as \(\sum _{j\in {}J_k} w_j \left( \sum _{i\le {}j} p_{ik} \right) \), where the completion time of job j in the non-preemptive WSPT schedule is equal to the sum of the processing times of the jobs placed earlier in the WSPT sequence. Thus, in order to complete the proof, we must argue that the objective function value associated with \((\overline{\varvec{u}}{}_k,\overline{\varvec{v}}{}_k)\) in \(\left( \mathbf {DS_{\varvec{k}}-R}\right) \) is equal to \(\sum _{j\in {}J_k} w_j \left( \sum _{i\le {}j} p_{ik} \right) \).

$$\begin{aligned}&\sum _{j\in {}J_k} p_{jk} \overline{u}{}_{jk} + \sum _{t=1}^{H_k} \overline{v}{}_{kt}\nonumber \\&\quad = \sum _{j\in {}J_k} p_{jk} \left( \frac{w_j}{p_{jk}}\left( \sum _{i\le {}j} p_{ik} + \frac{p_{jk}}{2}-\frac{1}{2} \right) + \sum _{i>j} w_i \right) \nonumber \\&\qquad + \sum _{t=1}^{H_k} \left( \frac{w_{l(t){}}}{p_{l(t){}k}}\left( t - \sum _{i\le {}l(t){}} p_{ik} \right) - \sum _{i>l(t){}} w_i \right) \end{aligned}$$
(37)
$$\begin{aligned}&\quad = \sum _{j\in {}J_k} p_{jk} \left( \frac{w_j}{p_{jk}}\left( \sum _{i\le {}j} p_{ik} + \frac{p_{jk}}{2}-\frac{1}{2} \right) + \sum _{i>j} w_i \right) \nonumber \\&\qquad + \sum _{j\in {}J_k} \left( \frac{w_j}{p_{jk}}\left( -\sum _{i=0}^{p_{jk}-1} i \right) - p_{jk}\sum _{i>j} w_i \right) \nonumber \\&\quad = \sum _{j\in {}J_k} p_{jk} \left( \frac{w_j}{p_{jk}}\left( \sum _{i\le {}j} p_{ik} + \frac{p_{jk}}{2}-\frac{1}{2} \right) + \sum _{i>j} w_i \right) \nonumber \\&\qquad - \sum _{j\in {}J_k} p_{jk} \left( \frac{w_j}{p_{jk}} \frac{(p_{jk}-1)}{2} + \sum _{i>j} w_i \right) \nonumber \\&\quad = \sum _{j\in {}J_k} p_{jk} \left( \frac{w_j}{p_{jk}}\left( \sum _{i\le {}j} p_{ik} + \frac{p_{jk}}{2}-\frac{1}{2} - \frac{p_{jk}-1 }{2} \right) \right) \nonumber \\&\quad = \sum _{j\in {}J_k} w_j \left( \sum _{i\le {}j} p_{ik} \right) . \end{aligned}$$
(38)

For the transition from (37) to (38), observe that each job \(j\in J_k\) becomes the job \(l(t){}\) for \(p_{jk}\) consecutive time periods, and the difference \(\left( t - \sum _{i\le {}l(t){}} p_{ik} \right) \) runs from \(-(p_{jk}-1)\) to zero during these time periods. Therefore, we have \(\sum _{t=1}^{H_k} \frac{w_{l(t){}}}{p_{l(t){}k}}\left( t - \sum _{i\le {}l(t){}} p_{ik} \right) =\sum _{j\in {}J_k} \frac{w_j}{p_{jk}}\left( -\sum _{i=0}^{p_{jk}-1} i \right) \). A similar argument yields \(-\sum _{t=1}^{H_k} \sum _{i>l(t){}} w_i =-\sum _{j\in {}J_k} p_{jk}\sum _{i>j}w_i\).

Benders decomposition algorithm with cut strengthening for \(\left( \mathbf {TR-A}\right) \)

   

figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bülbül, K., Şen, H. An exact extended formulation for the unrelated parallel machine total weighted completion time problem. J Sched 20, 373–389 (2017). https://doi.org/10.1007/s10951-016-0485-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-016-0485-x

Keywords

Navigation