Skip to main content
Log in

Scheduling jobs on parallel machines to minimize a regular step total cost function

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

An Erratum to this article was published on 19 August 2011

Abstract

This paper deals with a parallel machine scheduling problem whose objective is to minimize a regular step total cost function. A real world application of the problem is presented, and Mixed Integer Linear Programming models are described for the cases with and without release dates, as well as a dedicated constraint generation procedure. Experimental results are reported and discussed to evaluate the relevance of the different approaches on well-known special cases and the general case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baptiste, Ph., Le Pape, C., & Nuijten, W. (1999). Satisfiability tests and time-bound adjustments for cumulative scheduling problems. Annals of Operations Research, 92(0), 305–333.

    Article  Google Scholar 

  • Baptiste, P., Peridy, L., & Pinson, E. (2003). A branch and bound to minimize the number of late jobs on a single machine with release time constraints. European Journal of Operational Research, 144, 1–11.

    Article  Google Scholar 

  • Bornstein, C. T., Alcoforado, L. F., & Maculan, N. (2005). A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem. European Journal of Operational Research, 165, 649–656.

    Article  Google Scholar 

  • Bousetta, A., & Cross, A. (2005). Adaptative sampling methodology for in-line defect inspection. In IEEE/SEMI advanced manufacturing conference (pp. 25–31).

    Google Scholar 

  • Brucker, P. (2007). Scheduling algorithms. Berlin: Springer.

    Google Scholar 

  • Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research, 11, 42–47.

    Article  Google Scholar 

  • Chang, P. C., & Su, L. H. (2001). Scheduling n jobs on one machine to minimize the maximum lateness with a minimum number of tardy jobs. Computers and Industrial Engineering, 40, 349–360.

    Article  Google Scholar 

  • Chen, C.-L. (2008). An iterated local search for unrelated parallel machines problem with unequal ready times. In IEEE international conference on automation and logistics, Qingdao, China (pp. 2044–2047).

    Chapter  Google Scholar 

  • Dauzère-Pérès, S., & Sevaux, M. (2002). Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine. Naval Research Logistics, 50, 273–288.

    Article  Google Scholar 

  • Dauzère-Pérès, S., & Sevaux, M. (2004). An exact method to minimize the number of tardy jobs in single machine scheduling. Journal of Scheduling, 7, 405–420.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP completeness. San Francisco: Freeman.

    Google Scholar 

  • Good, R., & Purdy, M. (2007). An MILP approach to wafer sampling and selection. IEEE Transactions on Semiconductor Manufacturing, 20(4), 400–407.

    Article  Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 4, 287–326.

    Article  Google Scholar 

  • Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness (Research Report 43). Management Science Research Project. University of California, Los Angeles.

  • Jouglet, A., Savourey, D., Carlier, J., & Baptiste, P. (2008). Dominance-based heuristics for one-machine total cost scheduling problems. European Journal of Operational Research, 184, 879–899.

    Article  Google Scholar 

  • Lee, S. B., Lee, T.-Y., Liao, J., & Chang, Y.-C. (2003). A capacity-dependence dynamic sampling strategy. In Proceedings of the international symposium on semiconductor manufacturing conference (pp. 312–314). Berlin: Springer.

    Google Scholar 

  • Leung, J. Y.-T. (Ed.) (2004). Handbook of scheduling: algorithms, models, and performance analysis. London/Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Lopez, P., Erschler, J., & Esquirol, P. (1992). Ordonnancement de tâches sous contraintes: une approche énergétique. Automatique, Productique, Informatique Industrielle, 26, 453–481.

    Google Scholar 

  • Meral, A., & Omer, K. (1999). Scheduling jobs on unrelated parallel machines to minimize regular total cost functions. IIE Transactions, 31, 153–159.

    Google Scholar 

  • M’Hallah, R., & Bulfin, R. L. (2005). Minimizing the weighted number of tardy jobs on parallel processors. European Journal of Operational Research, 160, 471–484.

    Article  Google Scholar 

  • Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management Science, 15, 102–109.

    Article  Google Scholar 

  • Pinedo, M. L. (2005). Scheduling: theory, algorithms, and systems. Berlin: Springer.

    Google Scholar 

  • Tanaka, S., & Fujikama, S. (2008). An efficient exact algorithm for general single-machine scheduling with machine idle time. In IEEE international conference on automation science and engineering (pp. 371–376).

    Google Scholar 

  • Van den Akker, J. M., Hoogeveen, J. A., & Van de Velde, S. L. (1999). Parallel machine scheduling by column generation. Operations Research, 47, 862–872.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Detienne.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10951-011-0250-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detienne, B., Dauzère-Pérès, S. & Yugma, C. Scheduling jobs on parallel machines to minimize a regular step total cost function. J Sched 14, 523–538 (2011). https://doi.org/10.1007/s10951-010-0203-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-010-0203-z

Keywords

Navigation