Skip to main content

Advertisement

Log in

Improving C1 and C3 empirical Green’s functions from ambient seismic noise in NW Iran using RMS ratio stacking method

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The retrieval of stable and reliable empirical Green’s functions using ambient seismic noise plays a major role when studying the Earth’s structure at various scales. High-resolution noise correlation functions are obtained in the NW of Iran by processing techniques including dividing the continuously recorded raw data into short (i.e., 10 min) overlapping (i.e., 80%) time windows. We compare four stacking methods (i.e., linear, RMS, RMS ratio, and Nth-root stacking methods) to study robust and stable inter-station empirical Green’s functions. Our results indicate that the new RMS ratio method of stacking would be the optimal method to stack coherent signals. In other words, this method tackles problems including low signal-to-noise ratio (hereafter SNR) value, distortion of wave shape, and phase instability/unstable polarity treatment. In addition to noise correlation functions, we propose another strategy for the computation of the empirical Green’s functions. In this technique, the cross-correlation of scattered coda waves of the calculated noise correlation functions is performed individually. In addition to coda window length, we also investigate another effective parameter, the geometry of various virtual stations to obtain reliable empirical Green’s functions from the scattered coda waves of correlation functions with high SNR. The error of the velocities of Rayleigh wave empirical Green’s functions is on the order of approximately 0.6%, when compared to ambient seismic noise and scattered coda waves for a period band range of 3–10 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baig AM, Campillo M, Brenguier F (2009) Denoising seismic noise cross correlations. J Geophys Res 114 , B08310. https://doi.org/10.1029/2008JB006085

  • Bakulin A, Mateeva A, Mehta K, Jorgensen P, Ferrandis J, Shina Herold I, Lopez J (2007) Virtual source applications to imaging and reservoir monitoring. Lead Edge 26:732–740

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260

    Article  Google Scholar 

  • Brandmayr E, Vlahovic G (2016) The upper crust of the Eastern Tennessee Seismic Zone: insights from potential fields inversion. Tectonophysics 688:148–156. https://doi.org/10.1016/j.tecto.2016.09.035

    Article  Google Scholar 

  • Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130. https://doi.org/10.1038/ngeo104

    Article  Google Scholar 

  • Bungum H, Capon J (1974) Coda pattern and multipath propagation of Rayleigh waves at NORSAR. Phys Earth Planet Inter 9(2):111–127

    Article  Google Scholar 

  • Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549

    Article  Google Scholar 

  • Capon J (1970) Analysis of Rayleigh-wave multipath propagation at Lasa. Bull Seismol Soc Am 60(5):1701–1731

    Google Scholar 

  • Cho KH, Herrmann RB, Ammon CJ, Lee K (2007) Imaging the upper crust of the Korean peninsula by surface-wave tomography. Bull Seismol Soc Am 97:198–207

    Article  Google Scholar 

  • Cupillard P, Stehly L, Romanowicz B (2011) The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise. Geophys J Int 184:1397–1414. https://doi.org/10.1111/j.1365-246X.2010.04923.x

    Article  Google Scholar 

  • Froment B, Campillo M, Roux P, Gouédard P, Verdel A, Weaver RL (2010) Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 75(5):85–93. https://doi.org/10.1190/1.3483102

    Article  Google Scholar 

  • Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux P, Sánchez-Sesma FJ, Shapiro NM, Weaver RL (2008) Cross-correlation of random fields: mathematical approach and applications. Geophys Prospect 56:375–393

    Article  Google Scholar 

  • Ji C, Tsuboi S, Komatitsch D, Tromp J (2005) Rayleigh-wave multipathing along the west coast of North America. Bull Seismol Soc Am 95(6):2115–2124

    Article  Google Scholar 

  • Kanasewich ER, Alpaslan T, Hemmings CD (1973) Nth-root stack nonlinear multichannel filter. Geophysics 38:327–338

    Article  Google Scholar 

  • Landès M, Hubans F, Shapiro NM, Paul A, Campillo M (2010) Origin of deep ocean microseisms by using teleseismic body waves. J Geophys Res 115:B05302. https://doi.org/10.1029/2009JB006918

    Article  Google Scholar 

  • Lehujeur M, Vergne J, Schmittbuhl J, Maggi A (2015) Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France. Geothermal Energy 3. https://doi.org/10.1186/s40517-014-0020-2

  • Lehujeur M, Vergne J, Maggi A, Schmittbuhl J (2017) Ambient noise tomography with non-uniform noise sources and low aperture networks: case study of deep geothermal reservoirs in northern Alsace, France. Geophys J Int 208(1):193–210

    Article  Google Scholar 

  • Li Y, Wu Q, Pan J, Zhang F, Yu D (2013) An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet Sci Lett 377:367–377

    Article  Google Scholar 

  • Lin F-C, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the Western United States from ambient seismic noise: Rayleigh and love wave phase velocity maps. Geophys J Int 173:281–298

    Article  Google Scholar 

  • Lin F-C, Tsai VC, Schmandt B, Duputel Z, Zhan Z (2013) Extracting seismic core phases with array interferometry. Geophys Res Lett 40(6):1049–1053. https://doi.org/10.1002/grl.50237

    Article  Google Scholar 

  • Ma S, Beroza GC (2012) Ambient-field Green’s functions from asynchronous seismic observations. Seismol Res Lett 39. https://doi.org/10.1029/2011GL050755

  • Mainsant G, Larose E, Bronnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Geophys Res 117. https://doi.org/10.1029/2011JF002159

  • McFadden PL, Drummond BJ, Kravis S (1986) The Nth-root stack: theory, applications, and examples. Geophysics 51:1879–1892

    Article  Google Scholar 

  • McFadden PL, Drummond BJ, Kravis S (1987) The Nth-root stack: a cheap and effective processing technique. Explor Geophys 18:135–137

    Article  Google Scholar 

  • Melo G, Malcolm A, Mikesell D, van Wijk K (2013) Using SVD for improved interferometric Green’s function retrieval. Geophys J Int 194:1596–1612. https://doi.org/10.1093/gji/ggt172

    Article  Google Scholar 

  • Mordret A, Shapiro NM, Singh SC, Roux P, Montagner J-P, Barkved OI (2013) Azimuthal anisotropy at Valhall: the Helmholtz equation approach. Geophys Res Lett 40:2636–2641

    Article  Google Scholar 

  • Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. J Geophys Res 78:876–885

    Article  Google Scholar 

  • Obermann A, Planès T, Larose E, Campillo M (2013) Imaging presumptive and corruptive structural and mechanical changes of a volcano with ambient seismic noise. J Geophys Res Solid Earth 118:6285–6294. https://doi.org/10.1002/2013JB010399

    Article  Google Scholar 

  • Pedersen HA, Krüger F, the SVEKALAPKO Seismic Tomography Working Group (2007) Influence of the seismic noise characteristics on noise correlations in the Baltic shield. Geophys J Int 168:197–210

    Article  Google Scholar 

  • Picozzi M, Parolai S, Bindi D, Strollo A (2009) Characterization of shallow geology by high-frequency seismic noise tomography. Geophys J Int 176:164–174. https://doi.org/10.1111/j.1365-246X.2008.03966.x

    Article  Google Scholar 

  • Poli P, Pedersen HA, Campillo M, the POLENET/LAPNET Working Group (2013) Noise directivity and group velocity tomography in a region with small velocity contrasts: the northern Baltic shield. Geophys J Int 192(1):413–424

    Article  Google Scholar 

  • Poli P, Campillo M, Pedersen H, LAPNET Working Group (2012) Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science 338:1063–1065. https://doi.org/10.1126/science.1228194

    Article  Google Scholar 

  • Prieto GA, Lawrence JF, Beroza GC (2009) Anelastic Earth structure from the coherency of the ambient seismic field. J Geophys Res 114. https://doi.org/10.1029/2008JB006067

  • Renalier F, Jongmans D, Campillo M, Bard P-Y (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J Geophys Res 115. https://doi.org/10.1029/2009JF001538

  • Roux P, Sabra KG, Kuperman WA, Roux A (2005) Ambient noise cross correlation in free space: theoretical approach. Acoust Soc Am 117(1):79–84

    Article  Google Scholar 

  • Safarkhani M, Shirzad T (2017) Investigation of scattered coda correlation functions from noise correlation functions, in retrieving optimized empirical Green’s functions in Azerbaijan Region, Iran. J Earth Space Phys (in Persian with abstract in English) 43(2):323–337. https://doi.org/10.22059/jesphys.2017.60286

    Google Scholar 

  • Seats JK, Lawrence JF, Prieto AG (2012) Improved ambient noise correlation functions using Welch’s method. Geophys J Int 188:513–523

    Article  Google Scholar 

  • Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33, L21302. https://doi.org/10.1029/2006GL027797

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31, L07614. https://doi.org/10.1029/2004GL019491

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618

    Article  Google Scholar 

  • Sheng Y, Nakata N, Beroza GC (2018) On the nature of higher-order ambient seismic field correlations. J Geophys Res Solid Earth 123(9):7969–7982. https://doi.org/10.1029/2018JB015937

    Article  Google Scholar 

  • Shirzad T, Shomali ZH (2013) Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography. Geophys J Int 196:1162–1176. https://doi.org/10.1093/gji/ggt449

    Article  Google Scholar 

  • Shirzad T, Shomali ZH (2014) Extracting seismic body and Rayleigh waves from the ambient seismic noise using the rms-stacking method. Seismol Res Lett 86(1):173–180. https://doi.org/10.1785/0220140123

    Article  Google Scholar 

  • Shirzad T, Shomali ZH (2015) Extracting stable seismic core phases from ambient seismic noise. Bull Seismol Soc Am 106(1):307–312. https://doi.org/10.1785/0120150031

    Article  Google Scholar 

  • Shirzad T, Shomali ZH, Riahi M-A, Jarrahi M (2017) Near surface radial anisotropy in the Rigan area/SE Iran. Tectonophysics 694:23–34. https://doi.org/10.1016/j.tecto.2016.11.036

    Article  Google Scholar 

  • Shomali ZH, Shirzad T (2015) Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. J Seismol 19(1):191–200. https://doi.org/10.1007/s10950-014-9458-8

  • Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69, 046610. https://doi.org/10.1103/PhysRevE.69.046610

  • Spica Z, Legrand D, Iglesias A, Walter TR, Heimann S, Dahm T, Froger JL, Rémy D, Bonvalot S, West ME, Pardo MH (2015) Hydrothermal and magmatic reservoirs at Lazufre volcanic area, revealed by high-resolution seismic noise tomography. Earth Planet Sci Lett 421:27–38

    Article  Google Scholar 

  • Spica Z, Perton M, Calò M, Legrand D, Córdoba-Montiel F, Iglesias A (2016) 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3). Geophys J Int 206:1795–1813. https://doi.org/10.1093/gji/ggw240

    Article  Google Scholar 

  • Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111, B10306. https://doi.org/10.1029/2005JB004237

  • Stehly L, Campillo M, Froment B, Weaver RL (2008) Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise. J Geophys Res 113, B11306. https://doi.org/10.1029/2008JB005693

  • Stehly L, Fry B, Campillo M, Shapiro NM, Guilbert J, Boschi L, Giardini D (2009) Tomography of the Alpine region from observations of seismic ambient noise. Geophys J Int 178(1):338–350

    Article  Google Scholar 

  • Wapenaar K (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93, 254301. https://doi.org/10.1103/PhysRevLett.93.254301

  • Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A (2010) Tutorial on seismic interferometry: part 1—basic principles and applications. Geophysics 75(5):75A195–75A209

    Article  Google Scholar 

  • Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13), 134301. https://doi.org/10.1103/PhysRevLett.87.134301

  • Weaver R, Froment B, Campillo M (2009) On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J Acoust Soc Am 126(4):1817–1826

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. Eos Trans AGU 79:579

    Article  Google Scholar 

  • Xia Y, Ni S, Tape C (2018) Multipathing Rayleigh waves from long-distance noise cross correlation along an ocean-continent boundary (Alaska to California). Geophys Res Lett 45:6051–6060

    Article  Google Scholar 

  • Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168:259–274

    Article  Google Scholar 

  • Zigone D, Ben-Zion Y, Campillo M, Roux P (2015) Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love waves. Pure Appl Geophys 172:1007–1032. https://doi.org/10.1007/s00024-014-0872-1

    Article  Google Scholar 

Download references

Acknowledgments

The digital ambient seismic noise dataset has been collected by the Iranian Seismological Center (IrSC) at the University of Tehran/Iran (http://irsc.ut.ac.ir; not openly available to public; last accessed Feb. 2017). The earthquake waveform used in this study was obtained through the IrSC. All plots were also made using Generic Mapping Tools (GMT) version 4 (Wessel and Smith 1998; www.soest.hawaii.edu/gmt, last accessed May 2019). We would also like to thank the editor and four anonymous reviewers for their constructive comments and useful suggestions.

Funding

This work was supported by the (FAPESP), Sao Paulo, Brazil (grant numbers 2016/20952-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Safarkhani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarkhani, M., Shirzad, T. Improving C1 and C3 empirical Green’s functions from ambient seismic noise in NW Iran using RMS ratio stacking method. J Seismol 23, 787–799 (2019). https://doi.org/10.1007/s10950-019-09834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-019-09834-1

Keywords

Navigation