Skip to main content
Log in

Robust Room Temperature Superparamagnetic Properties of ZnO Nanostructures: Li-Based Fe Dual Dopants

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Strong room temperature superparamagnetic properties have been achieved in Zn0.94Li0.03Fe0.03O nanoparticles within a magnetic field of ± 20,000 Oe. High-purity ZnO, Zn0.97Li0.03O, Zn0.94Li0.03Mn0.03O, and Zn0.94Li0.03Fe0.03O nanostructures were synthesized by means of the coprecipitation method. The XRD crystallographic planes and HRTEM of the synthesized compositions showed that a single phase of a ZnO hexagonal wurtzite structure was obtained with the absence of any secondary phases or magnetic cluster. Pure ZnO powders show asymmetrical nanoparticles with a certain degree of agglomeration and approximately have an average particle size of 37 nm. The TEM image of Li-monodoped ZnO powders displays uniform spherical nanoparticles with less agglomeration, and the average particle size was reduced to 35 nm. The image of the (Li, Mn) codoped ZnO sample illustrates that the particles of ZnO are transformed to elongated shapes without agglomeration with an average particle size of 32 nm. In case of (Li, Fe) codoped ZnO powders, the image clearly shows a mixture of uniform nanospherical and elongated particles with a small average particle size of 27 nm. The absorption edge of ZnO is red shifted to more wavelength absorption due to (Li, Mn) and (Li, Fe) codoping, and it becomes sharper after Li monodoping which is a dynamic factor in the optoelectronic applications. Interestingly, the Zn0.94Li0.03Fe0.03O composition exhibits a superparamagnetic behavior at room temperature; it obviously shows a semi-saturation magnetization of 0.02 emu/g but has a nearly very small coercivity of 14 Oe. The instantaneous presence of both ferromagnetism and antiferromagnetism in Zn0.94Li0.03Fe0.03O gives rise to the disordered state of superparamagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raizada, P., Sudhaik, A., Patial, S., Hasija, V., Khan, A.A.P., Singh, P., Gautam, S., Kaur, M., Nguyen, V.-H.: Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges. Arab. J. Chem. 13, 8424–8457 (2020)

    Article  Google Scholar 

  2. Bousslama, W., Elhouichet, H., Férid, M.: Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik 134, 88–98 (2017)

    Article  ADS  Google Scholar 

  3. Kazmi, J., Ooi, P.C., Goh, B.T., Lee, M.K., Wee, M.F.M.R., Karim, S.S.A., Razad, S.R.A., Mohamed, M.A.: Bi-doping improves the magnetic properties of zinc oxide nanowires. RSC Adv. 10, 23297–23311 (2020)

    Article  ADS  Google Scholar 

  4. Punnoose, A., Reddy, K.M., Hays, J., Thurber, A., Engelhard, M.H.: Magnetic gas sensing using a dilute magnetic semiconductor, Appl. Phys. Lett. 89, 112509 (2006)

  5. Kayani, Z.N., Bashir, H., Riaz, S., Naseem, S.: Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications. Mater. Res. Bull. 115, 121–129 (2019)

    Article  Google Scholar 

  6. Liu, H., Li, G.P., Xu, D.J.E.N.N., Lin, Q.L., Gao, X.D., Wang, C.L.: Room temperature ferromagnetism in D-D neutron irradiated ZnO single crystals. J Supercond Nov Magn. 33, 1535–1542 (2020)

  7. Yaseen, M., Ambreen, H., Zia, M., Javed, H.M.A., Mahmood, A., Murtaza, A.: Study of half metallic ferromagnetism and optical properties of Mn-doped CdS. J. Supercond. Novel Magn. 34, 135–141 (2021)

    Article  Google Scholar 

  8. Sharma, K.R., Negi, N.S.: Doping effect of cobalt on various properties of nickel oxide prepared by solution combustion method. J. Supercond. Novel Magn. 34, 633–645 (2021)

    Article  Google Scholar 

  9. de Santana, W.M.O.S., Caetano, B.L., de Annunzio, S.R., Pulcinelli, S.H., Ménager, C., Fontana, C.R., Santilli, C.V.: Conjugation of superparamagnetic iron oxide nanoparticles and curcumin photosensitizer to assist in photodynamic therapy. Colloids and Surfaces B: Biointerfaces 196, 111297 (2020)

  10. Rosowska, J., Kaszewski, J., Witkowski, B., Wachnicki, Ł., Kuryliszyn-Kudelska, I., Godlewski, M.: The effect of iron content on properties of ZnO nanoparticles prepared by microwave hydrothermal method. Optical Materials 109, 110089 (2020)

  11. Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng., B 80, 383–387 (2001)

    Article  Google Scholar 

  12. Kumar, S., Kumar, M., Kumar, A., Sharma, S., Shahi, P., Chatterjee, S., Ghosh, A.K.: Investigations on structural and optical properties of Al-modified ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 7715–7723 (2020)

    Google Scholar 

  13. Peter, I.J., Praveen, E., Vignesh, G., Nithiananthi, P.: ZnO nanostructures with different morphology for enhanced photocatalytic activity. Mater. Res. Express 4, 124003 (2017)

  14. Yakout, S.M., El-Sayed, A.M.: Synthesis, structure, and room temperature ferromagnetism of Mn and/or Co doped ZnO nanocrystalline. J Supercond Nov Magn 29, 1593–1599 (2016)

    Article  Google Scholar 

  15. Wang, J., Wan, J., Chen, K.: Facile synthesis of superparamagnetic Fe-doped ZnO nanoparticles in liquid polyols. Mater. Lett. 64, 2373–2375 (2010)

    Article  Google Scholar 

  16. Mukherjee, S., Liang, L., Veiseh, O.: Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 12, 147 (2020)

    Article  Google Scholar 

  17. Vettumperumal, R., Kalyanaraman, S., Santoshkumar, B., Thangavel, R.: Magnetic properties of high Li doped ZnO sol–gel thin films. Mater. Res. Bull. 50, 7–11 (2014)

    Article  Google Scholar 

  18. Ahmed, S.A.: Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics 7, 604–610 (2017)

    Article  ADS  Google Scholar 

  19. Beltrán, J.J., Barrero, C.A., Punnoose, A.: Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17, 15284–15296 (2015)

    Article  Google Scholar 

  20. Duan, J., Wang, H., Wang, H., Zhang, J., Wu, S., Wang, Y.: Mn-doped ZnO nanotubes: from facile solution synthesis to room temperature ferromagnetism. Cryst Eng Comm 14, 1330–1336 (2012)

    Article  Google Scholar 

  21. Djerdj, I., Garnweitner, G., Arcon, D., Pregelj, M., Jaglicicef, Z., Niederberger, M.: Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study. J. Mater. Chem. 18, 5208–5217 (2008)

    Article  Google Scholar 

  22. Zulfiqar, M., Zubair, A., Khan, T., Hua, N., Ilyas, S., Fashu, A.M., Afzal, M.A., Safeen, R., Khan. Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 32, 9463–9474 (2021)

  23. Tariq, M., Li, Y., Li, W., Yu, Z., Li, J., Hu, Y., Zhu, M., Jin, H., Li, Y., Skotnicova, K.: Enhancement of ferromagnetic properties in (Fe, Ni) co-doped ZnO flowers by pulsed magnetic field processing. J. Mater. Sci.: Mater. Electron. 30, 8226–8232 (2019)

    Google Scholar 

  24. Shawuti, S., Sherwani, A.R., Can, M.M., Gülgün, M.A.: Complex impedance analyses of Li doped ZnO electrolyte materials. Sci. Rep. 10, 8228 (2020)

    Article  ADS  Google Scholar 

  25. Elilarassi, R., Chandrasekaran, G.: Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 186, 120–131 (2017)

    Article  ADS  Google Scholar 

  26. Akbarian, M., Mahjoub, S., Elahi, S.M., Zabihi, E., Tashakkorian, H.: Urtica dioica L. extracts as a green catalyst for the biosynthesis of zinc oxide nanoparticles: characterization and cytotoxic effects on fibroblast and MCF-7 cell lines. New J. Chem. 42, 5822–5833 (2018)

  27. Sandeep, K.M., Bhat, S., Serrao, F.J., Dharmaprakash, S.M.: Li doped ZnO thin films for optoelectronic applications. AIP Conference Proceedings 1731, 080055 (2016)

  28. Uddin, M.T., Hoque, M.E., Bhoumick, M.C.: Facile one-pot synthesis of heterostructure SnO2/ ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv. 10, 23554–23565 (2020)

    Article  ADS  Google Scholar 

  29. Bhatt, A.S., Ranjitha, R., Santosh, M.S., Ravikumar, C.R., Prashantha, S.C., Maphanga, R.R., Lenz e Silva, G.F.B.: Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13, 2961 (2020)

  30. López-Suárez, A., Acosta, D., Magaña, C., Hernández, F.: Optical, structural and electrical properties of ZnO thin films doped with Mn. J. Mater. Sci.: Mater. Electron. 31, 7389–7397 (2020)

    Google Scholar 

  31. Srinivasulu, T., Saritha, K., Reddy, K.T.R.: Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Modern Electronic Materials 3, 76–85 (2017)

    Article  Google Scholar 

  32. Rezende, C.P., da Silva, J.B., Mohallem, N.D.S.: Influence of drying on the characteristics of zinc oxide nanoparticles. Braz. J. Phys. 39, 248–251 (2009)

    Article  ADS  Google Scholar 

  33. Thi, T.U.D., Nguyen, T.T., Thi, Y.D., Thi, K.H.T., Phan, B.T., Pham, K.N.: Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 23899–23907 (2020)

    Article  ADS  Google Scholar 

  34. Shamhari, N.M., Wee, B.S., Chin, S.F., Kok, K.Y.: Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim. Slov. 65, 578–585 (2018)

    Article  Google Scholar 

  35. Largani, S.H., Pasha, M.A.: The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int Nano Lett 7, 25–33 (2017)

    Article  Google Scholar 

  36. Yakout, S.M.: Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: Insights into the magnetic and photocatalytic properties. Solid State Sci. 83, 207–217 (2018)

    Article  ADS  Google Scholar 

  37. Mohapatra, J., Mishra, D.K., Singh, S.K.: Superparamagnetic behavior in chemically synthesized nanocrystalline Zn0.99Ni0.01O powders. Materials Letters 75, 91–94 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Yakout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.M., Yakout, S.M. Robust Room Temperature Superparamagnetic Properties of ZnO Nanostructures: Li-Based Fe Dual Dopants. J Supercond Nov Magn 34, 3011–3017 (2021). https://doi.org/10.1007/s10948-021-05972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05972-1

Keywords

Navigation