Skip to main content
Log in

Structural, Magnetic and Optical Analysis of Pb2+- and Ce3+-Doped Strontium Hexaferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

M-type strontium hexaferrite with chemical formula Sr1-xPbxFe12-yCeyO19 (x = 0.0, 0.1, 0.2, 0.3 and y = 0.0, 0.2, 0.4, 0.6) was prepared by sol-gel auto combustion approach. All the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis-NIR spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The XRD pattern shows that all samples exhibit single phase hexagonal phase without any secondary phase. The size of the crystallites was in the 77–90 nm range. The SEM micrographs show agglomerated particles. Raman spectral analysis reveals the presence of prominent peaks of Fe-O bonds. The band gap was calculated, and it decreased from 2.08 eV to 1.83 eV. The reduced band gap value maybe the result of some lattice strain, crystallite size and minor impurity caused by continuous band of sub-bands developed in the conduction band. The VSM results show the behaviours of saturation magnetization (Ms), retentivity magnetization (Mr) and coercivity (Hc). The Ms, Mr and Hc values decrease with increase in the Ce/Pb concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ramezanzaeh, G., Ghasemi, A., Moza_Arinia, R., Alizadeh, A.: Electromagnetic wave reflection loss and magnetic properties of M-type SrFe12x(Mn0.5Sn0.5)xO19 hexagonal ferrite nanoparticles in the Ku microwave band. Ceram Int. 43, 10231–10238 (2017)

    Article  Google Scholar 

  2. Ashraf, G.A., Zhang, L.T., Abbas, W., Murtaza, G.: Synthesis and characterizations of Al-Sm substituted Ba-Sr M-type hexagonal ferrite nanoparticles via sol–gel route. Ceram Int. 44, 18678–18685 (2018)

    Article  Google Scholar 

  3. Trukhanov, A.V., Kostishyn, V.G., Panina, L.V., Korovushkin, V.V., Turchenko, V.A., Thakur, P., Thakur, A., Yang, Y., Vinnik, D.A., Yakovenko, E.S.: Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloys Compd. 754, 247–256 (2018)

    Article  Google Scholar 

  4. Ueda, H., Tanioku, Y., Michioka, C., Yoshimura, K.: Magnetocrystalline anisotropy of La- and Co-substituted M-type strontium ferrites: role of Co2+ and Fe2+. Phys Rev B. 95, 224421 (2017)

    Article  ADS  Google Scholar 

  5. Chawla, S.K., Mudsainiyan, R.K., Meen, S.S., Yusuf, S.M.: Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12–2x)O19. J Magn Magn Mater. 350, 23–29 (2014)

    Article  ADS  Google Scholar 

  6. Deng, L., Zhao, Y., Xie, Z., Liu, Z., Tao, C., Deng, R.: Magnetic and microwave absorbing properties of low-temperature sintered BaZrxFe12-xO19. RSC Adv. 8, 42009–42016 (2018)

  7. Cabanas, M.V., Gonzalezcalbet, J.M., Valletregi, M.: Co±Ti substituted hexagonal ferrites for magnetic recording. J Solid State Chem. 115, 347–352 (1995)

    Article  ADS  Google Scholar 

  8. Anbarasu, V., et al.: Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J Mater Sci Mater Electron. 24, 916–926 (2013)

    Article  Google Scholar 

  9. Du, Y., Liu, Y., Lian, L., Du, J.: Structural and magnetic properties of Sr0.8La0.2Co0.2Fe11.8−xAlxO19 hexaferrite particles prepared via sol-gel auto-combustion method. J Magn Magn Mater. 469, 189–195 (2019)

    Article  ADS  Google Scholar 

  10. Gonzalez-Carreno, T., Morales, M.P., Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater Lett. 43, 97–101 (2000)

    Article  Google Scholar 

  11. Cernea, M., Sandu, S.G., Galassi, C., Radu, R., Kuncser, V.: Magnetic properties of BaxSr1-xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J Alloys Compd. 561, 121–128 (2013)

    Article  Google Scholar 

  12. Liu, J.R., Hong, R.Y., Feng, W.G., Badami, D., Wang, Y.Q.: Large-scale production of strontium ferrite by molten-salt-assisted coprecipitation. Powder Technol. 262, 142–149 (2014)

    Article  Google Scholar 

  13. Ashiq, M.N., Iqbal, M.J., Gul, I.H.: Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J Alloys Compd. 487, (2009)

  14. Rehmana, K.M.U., Riaz, M., Liu, X., Khan, M.W., Yang, Y., Batood, K.M., et al.: Magnetic properties of Ce doped M-type strontium hexaferrites synthesized by ceramic route. J Magn Magn Mater. 474, 83–89 (2019)

    Article  ADS  Google Scholar 

  15. Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and magnetic properties of Ce doped strontium hexaferrite. Ceram Int. 44, 9000–9008 (2018)

    Article  Google Scholar 

  16. Rezlescu, N., Doroftei, C., Rezlescu, E., Popa, P.D.: The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19. J Alloys Compd. 451, 492–496 (2008)

    Article  Google Scholar 

  17. Auwal, I.A., Baykal, A., Guner, S., Sertkol, M., Sozeri, H.: Magneto-optical properties BaBixLaxFe12-2xO19 (0.0 ≤ x ≤ 0.5) hexaferrites. J Magn Magn Mater. 409, 92–98 (2016)

    Article  ADS  Google Scholar 

  18. Auwal, I.A., Guner, S., Gunguneş, H., Baykal, A.: Sr1-xLaxFe12O19 (0.0 ≤ x ≤ 0.5) hexaferrites: synthesis, characterizations, hyperfine interactions and magneto-optical properties. Ceram Int. 42, 12995–13003 (2016)

    Article  Google Scholar 

  19. Guner, S., Auwal, I.A., Baykal, A., Sozeri, H.: Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12-3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. J Magn Magn Mater. 416, 261–268 (2016)

    Article  ADS  Google Scholar 

  20. Almessiere, M.A., Slimani, Y., Baykal, A.: Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram Int. 45, 963–969 (2019)

    Article  Google Scholar 

  21. Kaur, T., Sharma, J., Kumar, S., Srivastava, A.K.: Cryst Res Technol. 52, 1700098 (2017)

    Article  Google Scholar 

  22. Iqbal, M.J., Ashiq, M.N., Gomez, P.H.: Effect of doping of Zr–Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J Alloys Compd. 478, 736–740 (2009)

  23. Iqbal, M.J., Ashiq, M.N.: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem Eng J. 136(2), 383–389 (2008)

  24. Mousavi Ghahfarokhi, S.E., Ranjbar, F., Zargar Shoushtari, M.: A study of the properties of SrFe12−xCoxO19 nanoparticles. J Magn Magn Mater. 349,(80–87) (2014)

  25. Iqbal, M.J., Ashiq, M.N., Gomez, P.H., Munoz, J.M.: Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J Magn Magn Mater. 320(6), 881–886 (2008)

  26. Kuruva, P., Matli, P.R., Mohammad, B., Reddigari, S., Katlakunta, S.: J Magn Magn Mater. 382, 172–178 (2015)

    Article  ADS  Google Scholar 

  27. Jean, M., Nachbaur, V., Bran, J., Le Breton, J.: Synthesis and characterization of SrFe 12O19 powder obtained by hydrothermal process. J Alloys Compd. 496, 306–312 (2010)

    Article  Google Scholar 

  28. Awadallah, A., Mahmooda, S.H., Maswadeha, Y., Bsoulb, I., Awawdeh, M., Mohaidat, Q.I., Juwharia, H.: Structural magnetic and Mössbauer spectroscopy of Cu substituted M-type hexaferrites. Mater Res Bull. 74, 192–201 (2016)

    Article  Google Scholar 

  29. Auwal, I.A., Güngüneş, H., Güner, S., Sagar, E., Shirsath, M.S., Baykal, A.: Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12−3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. Mater Res Bull. 80, 263–272 (2016)

    Article  Google Scholar 

  30. Rashad, M., Ibrahim, I.: A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method. J Mater Sci Mater Electron. 22, 1796–1803 (2011)

    Article  Google Scholar 

  31. Primc, D., Drofenik, M., Makovec, D.: Low-temperature hydrothermal synthesis of ultrafine strontium hexaferrite nanoparticles. Eur J Inorg Chem. 2011, 3802–3809 (2011)

    Google Scholar 

  32. Drmota, A., Drofenik, M., Žnidaršič, A.: Synthesis and characterization of nanocrystalline strontium hexaferrite using the co-precipitation and microemulsion methods with nitrate precursors. Ceram Int. 38, 973–979 (2012)

    Article  Google Scholar 

  33. Zaitsev, D., Kushnir, S., Kazin, P., Tretyakov, Y.D., Jansen, M.: Preparation of the SrFe12O19-based magnetic composites via boron oxide glass devitrification. J Magn Magn Mater. 301, 489–494 (2006)

    Article  ADS  Google Scholar 

  34. Arendt, R.: Liquid-phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3. J Solid State Chem. 8, 339 (1973)

    Article  ADS  Google Scholar 

  35. Ansari, F., Soofivand, F., Salavati-Niasari, M.: Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19 nanoceramics via sol–gel auto-combustion route. Mater Charact. 103, 11–17 (2015)

    Article  Google Scholar 

  36. You, L., Qiao, L., Zheng, J., Jiang, M., Jiang, L., Sheng, J.: Magnetic properties of La-Zn substituted hexaferrites by self-propagation high-temperature synthesis. J Rare Earths. 26(1), 81–84 (2008)

    Article  Google Scholar 

  37. M.N. Ashiq, A.S. Asi, S. Farooq, M.N.U. Haq, S. Rehman, Magnetic and electrical properties of M-type nano-strontium hexaferrite prepared by sol-gel combustion method, J. Magn. Magn. Mater. 444, 426–431 (2017)R.K. Sahu, O. Mohanta, A.K. Pramanik, XPS study on the correlation of magnetic properties and site occupancy of Al doped SrFe12O19, J. Alloy. Compd. 532, 114–120 (2012)

  38. Chauhan, C.C., Kagdi, A.R., Jotania, R.B., Upadhyay, A., Sandhu, C.S., Shirsath Sagar, E., et al.: Magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram Int. 44, 17812–17823 (2018)

    Article  Google Scholar 

  39. Manikandan, A., Durka, M., Seevakan, K., Antony, S.A.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0≤ x≤ 0.5) nanophotocatalysts. J Supercond Nov Magn. 28, 1405–1416 (2015)

    Article  Google Scholar 

  40. Xu, J., Zou, H., Li, H., Li, G., Gan, S., Hong, G.: Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. J Alloys Compd. 490, 552 (2010)

    Article  Google Scholar 

  41. Kulkarni, A.B., Mathad, S.N.: Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites. Mater Sci Energy Technol. 2, 455–462 (2019)

    Google Scholar 

  42. Banihashemi, V., Ghazi, M.E., Izadifard, M.: Structural, optical, dielectric and magnetic properties of Ce-doped strontium hexaferrite synthesized by hydrothermal process. J Mater Sci Mater Electron. (2019). https://doi.org/10.1007/s10854-019-02086-2

  43. Tan, G., Wang, M.: Multiferroic PbFe12O19 ceramics. J Electroceram 26, 170–174 (2011)

  44. Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and Magnetic Properties of Ce-Doped Strontium Hexaferrite. Ceram Int. 44, 9000–9008 (2018)

    Article  Google Scholar 

  45. Kaur, T., Sharma, J., Kumar, S., Srivatsava, A.K.: Optical and multiferroic properties of Gd-co substituted barium hexaferrite. Cryst Res Technol. 52(1700098), (2017)

  46. Nethala, G.P., Tadi, R., Gajula, G.R., Chidambarakumar, K.N., Veeraiyah, V.: Investigations on the structural, magnetic and Mossbauer properties of cerium doped strontium ferrite. Physica B Codensed Matter. 550, 136–144 (2018)

    Article  ADS  Google Scholar 

  47. Karmakar, M., Mondal, B., Pal, M., Mukherjee, K.: Acetone and ethanol sensing of barium hexaferrite particles: a case study considering the possibilities of non-conventional hexaferrite sensor. Sensors Actuators B Chem. 190, 627–633 (2014)

    Article  Google Scholar 

  48. Ali, I., Islam, M.U., Awan, M.S., Ahmad, M., Ashiq, M.N., Naseem, S.: Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol–gel auto-combustion techngehlique. J Alloys Compd. 550, 564–572 (2013)

    Article  Google Scholar 

  49. Roohani, E., Arabi, H., Sarhaddi, R.: Influence of the nickel substitution on crystal structure and magnetic properties of strontium ferrite preparation via sol-gel auto combustion route. Int J Mod Phys B. 31(1750271), (2017)

Download references

Acknowledgements

The authors would like to thank Centre for High Pressure Research (CHPR), Bharathidasan University for Powder XRD, University Science Instrumentation Centre (USIC), Alagappa University, karaikkudi for VSM and Raman studies, Archbishop Casimir Instrumentation Centre (ACIC), St. Joseph’s College (Autonomous), Tiruchirappalli for UV-Vis-NIR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramachandra Raja.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, T., Raja, C.R. & Arumugam, S. Structural, Magnetic and Optical Analysis of Pb2+- and Ce3+-Doped Strontium Hexaferrite. J Supercond Nov Magn 33, 2451–2458 (2020). https://doi.org/10.1007/s10948-020-05493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05493-3

Keywords

Navigation