Skip to main content
Log in

Magnetic, Structural, and Optical Properties of Gadolinium-Substituted Co0.5Ni0.5Fe2O4 Spinel Ferrite Nanostructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Gadolinium-substituted cobalt–nickel ferrite Co0.5Ni0.5GdxFe2-xO4 (0 ≤ x ≤ 1.0) nanostructures have been synthesized by hydrothermal approach which results more hydrophilic surface properties important for biomedical applications. Structural analysis by X-ray diffraction revealed the formation of a single-phase spinel ferrite for all samples and crystallite size is ranging from 13 to 28 nm. Lattice constant decreases with increasing Gd3+ ion concentration due to differences between ionic radii of Gd3+ and Fe3+. Morphological analysis by scanning and transmission electron microscopy indicated the shape transformed from agglomerated particles into rod-shaped with increasing Gd content. Fourier transform infrared analysis also correlated the presence of the spinel ferrite structure. Optical band gap measurement implied that band gap decreases with increasing Gd content. In order to determine magnetic properties of cobalt–nickel spinel ferrite nanostructures, isothermal magnetization measurements have been obtained at 300 and 15 K using vibrating sample magnetometer. Magnetic properties are strongly depending on Gd substitution ratio, which alters the crystallite size, cation distribution, and exchange interactions between octahedral and tetrahedral sites of nanostructures. Saturation magnetizations decreased with increasing Gd substitution at both temperatures since cation distribution at different sites and large lattice distortion caused by Gd3+ ion substitution. Due to complex relations between the shape anisotropy, crystallite size, grain boundaries, secondary phases, and increasing Gd content observed in Co0.5Ni0.5GdxFe2-xO4 nanostructures, coercivity results in different magnetocrystalline anisotropy behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baykal, A., Kasapoglu, N., Koseoglu, Y., Basaran, A., Kavas, H., Toprak, M.: Microwave-induced combustion synthesis and characterization of NixCo1−xFe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). Open Chem. J. 6, 125–130 (2008)

    Google Scholar 

  2. Kasapoglu, N., Birsoz, B., Baykal, A., Koseoglu, Y., Toprak, M.: Synthesis and magnetic properties of octahedral ferrite NiχCo1−χFe2O4 nanocrystals. Open Chem. J. 5, 570–580 (2007)

    Google Scholar 

  3. Deligoz, H., Baykal, A., Toprak, M.S., Tanriverdi, E.E., Durmus, Z.: Sozeri, H.; Synthesis, structural, magnetic and electrical properties of Co1−xZnxFe2O4 (x = 0.0, 0.2) nanoparticles. Mater. Res. Bull. 48, 646–654 (2013)

    Google Scholar 

  4. Ati, A.A., Othaman, Z., Samavati, A.: Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)

    ADS  Google Scholar 

  5. Ati, A.A., Othaman, Z., Samavati, A., Doust, F.Y.: Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 1058, 136–141 (2014)

    ADS  Google Scholar 

  6. Bharathi, K.K., Ramana, C.V.: Improved electrical and dielectric properties of La-doped Co ferrite. J. Mater. Res. 26(4), 584–591 (2011)

    ADS  Google Scholar 

  7. Jain, S., Parashar, J., Kurchania, R.: Effect of magnetic field on terahertz generation via laser interaction with a carbon nanotube array. Int. Nano Lett. 3, 5p (2013)

    ADS  Google Scholar 

  8. Thakur, A., Thakur, P., Hsu, J.-H.: Magnetic behaviour of Ni0.4Zn0.6Co0.1Fe1.9O4 spinel nano-ferrite. J. Appl. Phys. 111(7), 07A305 (2012)

    Google Scholar 

  9. Gul, I.H., Pervaiz, E.: Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 47(6), 1353–1361 (2012)

    Google Scholar 

  10. Singhal, S., Singh, J., Barthwal, S.K., Chandra, K.: Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−xNixFe2O4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    ADS  Google Scholar 

  11. Mane, D.R., Birajdar, D.D., Patil, S., Shirsath, S.E., Kadam, R.H.: Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7−xCoxZn0.3Fe2O4 (0 ≤ x ≤ 0.5). J. Sol-Gel Sci. Technol. 58(1), 70–79 (2010)

    Google Scholar 

  12. Abbas, Y.M., Mansour, S.A., Ibrahim, M.H., Ali, S.E.: Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 323(22), 2748–2756 (2011)

    ADS  Google Scholar 

  13. Hashim, M., Muddin, A., Kumar, S., Shirsath, S.E., Kotnala, R.K., Shah, J., Kumar, R.: Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139(2-3), 364–374 (2013)

    Google Scholar 

  14. Muthuraman, K., Alagarsamy, S., Banu, M.A., Naidu, V.: Synthesis of Nano sized Ce-Co Doped Zinc Ferrite and their Permittivity and Hysteresis Studies. Int. J. Comput. Appl. 32(3), 18–27 (2011)

    Google Scholar 

  15. Hankare, P.P., Sanadi, K.R., Garadkar, K.M., Patil, D.R., Mulla, I.S.: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. J. Alloys Compd. 553, 383–388 (2013)

    Google Scholar 

  16. Murugesan, C., Chandrasekaran, G.: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    Google Scholar 

  17. Koseoglu, Y., Kurtulus, F., Kockar, H., Guler, H., Karaagac, O., Kazan, S., Aktas, B.: Magnetic Characterizations of Cobalt Oxide Nanoparticles. J. Supercond. Nov. Magn. 25(8), 2783–2787 (2012)

    Google Scholar 

  18. Rafienia, M., Bighasm, A., Hassanzadeh-Tabrizi, S.A.: Solvothermal Synthesis Mgnetic Spinel Ferrites. J. Medical Signals Sens. 8, 108–118 (2018)

    Google Scholar 

  19. Naeem, M., Shah, N.A., Gul, I.H., Maqsood, A.: Structural, electrical and magnetic characterization of Ni–Mg spinel ferrites. J. Alloys Compd. 487, 739–743 (2009)

    Google Scholar 

  20. Devan, R.S., Kolekar, Y.D., Chougule, B.K.: Effect of cobalt substitution on the properties of nickel–copper ferrite. J. Phys. Condens. Matter. 18, 9809 (2006)

    ADS  Google Scholar 

  21. Gul, I.H., Pervaiz, E.: Comparative study of NiFe2-xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 47, 1353–1361 (2012)

    Google Scholar 

  22. Pachpinde, A.M., Langade, M.M., Lohar, K.S., Patange, S.M., Shirsath, S.E.: Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2−xO4 nanoparticles. Chem. Phys. 429, 20–26 (2014)

    Google Scholar 

  23. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuřitka, I., Kožáková, Z.: Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    ADS  Google Scholar 

  24. Karaagac, O., Bilir, B., Kockar, H.: Superparamagnetic cobalt ferrite nanoparticles: effect of temperature and base concentration. J. Supercond. Nov. Magn. 28(3), 1021–1027 (2015)

    Google Scholar 

  25. Karaagac, O., Bilir Yildiz, B., Kockar, H.: The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. J. Magn. Magn. Mater. 473(1), 262–267 (2019)

    ADS  Google Scholar 

  26. Deraz, N.M., Abd-Elkader, O.H.: Processing and characterization of nano-magnetic Co0.5Ni0.5Fe2O4 system. J. Ind. Eng. Chem. 20, 3251–3255 (2014)

    Google Scholar 

  27. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    ADS  Google Scholar 

  28. Almessiere, M.A., Slimani, Y., Guner, S., Nawaz, M., Baykal, A., Aldakheel, F., Sadaqat, A., Ercan, I.: Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J. Mol. Struct. 1195, 269–279 (2019)

    ADS  Google Scholar 

  29. Almessiere, M.A., Slimani, Y., Guner, S., Sertkol, M., Demir Korkmaz, A., Shirsath, S.E., Baykal, A.: Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019)

    Google Scholar 

  30. Almessiere, M.A., Slimani, Y., Guner, Nawaz, M., Baykal, A., Aldakheel, F., Akhtar, S., Ercan, I., Belenli, I., Ozcelik, B.: Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45(7), 8222–8232 (2019)

    Google Scholar 

  31. Topkaya, R., Gungunes, H., Eryigit, S., Shirsath, S.E., Yildiz, A., Baykal, A.: Effect of bimetallic (Ni and Co) substitution on magnetic properties of MnFe2O4 nanoparticles. Ceram. Int. 42(12), 13773–13782 (2016)

    Google Scholar 

  32. Baykal, A., Eryigit, S., Topkaya, R., Gungunes, H., Amir, M.D., Yildiz, A., Kurtan, U., Shirsath, S.E.: Magnetic properties and hyperfine interactions of Co1-2xNixMnxFe2O4 nanoparticles. Ceram. Int. 43, 4746–4752 (2017)

    Google Scholar 

  33. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C. 33, 1–8 (2013)

    Google Scholar 

  34. Bharathi, K.K., Ramana, C.V.: Improved electrical and dielectric properties of La-doped Co ferrite. J. Mater. Res. 26, 584–591 (2011)

    ADS  Google Scholar 

  35. Pervaiz, E., Gul, I.H.: Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites. J. Magn. Magn. Mater. 343, 194–202 (2013)

    ADS  Google Scholar 

  36. Dwevedi, S., Bharathi, K.K., Markandeyulu, G.: Magnetoreactance studies in rare earth-doped Ni ferrite. IEEE Trans. Magn. 45, 4253–4256 (2009)

    ADS  Google Scholar 

  37. Sun, G.L., Li, J.B., Sun, J.J., Yang, X.Z.: The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel–zinc ferrites. J. Magn. Magn. Mater. 281, 173–177 (2004)

    ADS  Google Scholar 

  38. Hemeda, O.M., Said, M.Z., Barakat, M.M.: Spectral and transport phenomena in Ni ferrite-substituted Gd2O3. J. Magn. Magn. Mater. 224, 132–142 (2001)

    ADS  Google Scholar 

  39. Dixit, G., Singh, J.P., Srivastava, R.C., Agrawal, H.M.: Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 324, 479–483 (2012)

    ADS  Google Scholar 

  40. Ahmad, I., Farid, M.T.: Characterization of cobalt based spinel ferrites with small substitution of gadolinium. World Appl. Sci. J. 19, 464–469 (2012)

    Google Scholar 

  41. Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., Wu, H.: Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–137 (2011)

    ADS  Google Scholar 

  42. Sodaee, T., Ghasemi, A., Razavi, R.S.: Microstructural characteristics and magnetic properties of gadolinium-substituted cobalt ferrite nanocrystals synthesized by hydrothermal processing. J. Clust. Sci. 27, 1239–1251 (2016)

    Google Scholar 

  43. Puli, V.S., Adireddy, S., Ramana, C.V.: Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J. Alloys Compd. 644, 470–475 (2015)

    Google Scholar 

  44. Ortiz-Quinonez, J.-L., Pal, U., Villanueva, M.S.: Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co−Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega. 3, 14986–15001 (2018)

    Google Scholar 

  45. Almessiere, M.A., Slimani, Y., Sertkol, M., Nawaz, M., Sadaqat, A., Baykal, A., Ercan, I., Ozcelik, B.: Effect of Nb3+ substitution on the structural, magnetic and optical properties of Co0.5Ni0.5Fe2O4 nanoparticles. Nanomaterials. 9, 430–443 (2019)

    Google Scholar 

  46. Kang, J.G., Min, B.K., Sohn, Y.: Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram. Int. 41, 1243–1248 (2015)

    Google Scholar 

  47. Vinosha, P.A., Das, S.J.: Investigation on the role of pH for the structural, optical and magnetic properties of cobalt ferrite nanoparticles and its effect on the photo-fenton activity, materials today: Proceedings, 5, 2, 8662-8671 (2018)

    Google Scholar 

  48. Kumar, G., Shah, J., Kotnala, R.K., Dhiman, P., Rani, R., Singh, V.P., Garg, G., Shirsath, S.E., Batoo, K.M., Singh, M.: Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties. Ceram. Int. 40(9), 14509–14516 (2014)

    Google Scholar 

  49. Coey, J.M.D., Skumryev, V., Gallagher, K.: Is gadolinium really ferromagnetic? Nat. Brief Commun. 401, 35–36 (1999)

    Google Scholar 

  50. Kumar, P., Sharma, S.K., Knobel, M., Chand, J., Singh, M.: Investigations of lanthanum doping on magnetic properties of nano cobalt ferrites. J. Electroceram. 27, 51–55 (2011)

    Google Scholar 

  51. Khan, M.A.: Javid ur Rehman, M., Mahmood, K., Ali, I., Akhtar, M.N., Murtaza, G., Shakir, I., Warsi, M.F.: Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram. Int. 41, 2286–2293 (2015)

    Google Scholar 

  52. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Sarac.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarac, M.F. Magnetic, Structural, and Optical Properties of Gadolinium-Substituted Co0.5Ni0.5Fe2O4 Spinel Ferrite Nanostructures. J Supercond Nov Magn 33, 397–406 (2020). https://doi.org/10.1007/s10948-019-05359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05359-3

Keywords

Navigation