Skip to main content
Log in

Effect of Hydrostatic Pressure on Superconductivity of Pb

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of hydrostatic pressure on superconductivity of face-centered cubic bulk Pb has been investigated by using first-principle calculations. The calculations were performed based on the density functional theory as implemented in Quantum ESPRESSO computational package. The electronic density of states (DOS), phonon density of states (PhDOS), isotropic Eliashberg function (α2F(ω)), electron-phonon coupling strength (λ), logarithmic phonon frequency (< ω >log), and superconducting critical temperature (Tc) have been calculated within the general framework of Eliashberg formalism. The critical temperature was calculated using the modified McMillan formula. At equilibrium, where the hydrostatic pressure of the system is almost zero, the calculated Tc value is 7.86 K. It is relatively nearer to the experimental value of 7.2 K. The slight overestimation is attributed to DFT approximations used. Our calculations indicated that hydrostatic pressure suppresses superconducticvity of bulk Pb. It has been observed that Tc decreases from 7.86 K at equilibrium structure to almost zero at a pressure of 3500 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kamerlingh Onnes, H.: Commun. Phys. Lab. Univ. Leiden119b (Feb. 1911), reprinted in Proc. K. Ned. Akad. Wet. 13, 1107 (1911)

  2. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: . Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: . Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  4. Migdal, A.: . Sov. Phys. JETP 34, 996 (1958)

    Google Scholar 

  5. Eliashberg, G.: . Sov. Phys. JETP 11, 696 (1960)

    Google Scholar 

  6. Eliashberg, G.: . Sov. Phys. JETP 12, 1000 (1961)

    Google Scholar 

  7. Margine, E.R., Giustino, F.: . Phys. Rev. B 87, 024505 (2013)

    Article  ADS  Google Scholar 

  8. McMillan, W.L.: . Phys. Rev. 167, 331–344 (1968)

    Article  ADS  Google Scholar 

  9. Allen, P.B., Dynes, R.C.: . Phys. Rev. B 12, 905–922 (1975)

    Article  ADS  Google Scholar 

  10. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: . J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  11. Ceperley, D.M., Alder, B.J.: . Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  12. Perdew, J.P., Zunger, A.: . Phys. Rev. B 23, 5048–5079 (1981)

    Article  ADS  Google Scholar 

  13. Fuchs, M., Scheffler, M.: . Comput. Phys. Commun. 119, 67 (1999)

    Article  ADS  Google Scholar 

  14. Methfessel, M., Paxton, A.T.: . Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  15. Haas, P., Tran, F., Blaha, P.: . Phys. Rev. B 79, 085104 (2009)

    Article  ADS  Google Scholar 

  16. Carbotte, J.P., Vashishta, P.: . Can. J. Phys. 49, 1493 (1971)

    Article  ADS  Google Scholar 

  17. Dynes, R.C.: . Phys. Rev. B 2, 644 (1970)

    Article  ADS  Google Scholar 

  18. Hodder, R.E.: . Phys. Rev. 180, 530 (1969)

    Article  ADS  Google Scholar 

  19. Bennett, A.J.: . Phys. Rev. 140, A1902 (1965)

    Article  ADS  Google Scholar 

  20. Franck, J.P., Keeler, W.J.: . Phys. Rev. Lett. 20, 379 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Material Theory group of Physics and Astronomy department in Uppsala University for their basic computational training and providing us computational facilities.

Funding

This study was financially supported by the Physics Departments of Addis Ababa University and Ambo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeleke Deressa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deressa, Z., Singh, P. Effect of Hydrostatic Pressure on Superconductivity of Pb. J Supercond Nov Magn 32, 3739–3746 (2019). https://doi.org/10.1007/s10948-019-05168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05168-8

Keywords

Navigation