Skip to main content
Log in

Magnetic, Magnetocaloric Properties, and Phenomenological Model in Amorphous Ni80−xFex(SiB)20 Alloys with (x = 0, 2.4, 8, and 16)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Amorphous Ni80−xFex(SiB)20 ribbons with different Fe concentrations (0 ≤ x ≤ 16) were fabricated by melt spinning technique, and their magnetic and magnetocaloric properties were investigated and a phenomenological model was also applied. The Curie temperature (TC), magnetic moment of transition metal and maximum magnetic entropy change (− ΔSM) increase with increasing Fe content. At a magnetic field change of 2 T, the (− ΔSM) and relative cooling power (RCP) show the highest values of 0.53 J/kg K and 85 J kg−1 respectively for Fe16Ni64(SiB)20 alloys. In addition, a satisfactory agreement between the experimental and Hamad’s phenomenological model is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Egami, T.: Magnetic amorphous alloys: physics and technological applications. Rep. Prog. Phys. 47, 1601–1725 (1984)

    Article  ADS  Google Scholar 

  2. Hasegawa, R., Azuma, D.: Impacts of amorphous metal-based transformers on energy efficiency and environment. J. Magn. Magn. Mater. 320, 2451–2456 (2008)

    Article  ADS  Google Scholar 

  3. Wang, G.F., Li, H.L., Zhang, X.F., Ma, Q., Liu, Y.L., Li, Y.F., Zhao, Z.R.: J. Supercond. Nov. Magn. 29, 1837 (2016)

    Article  Google Scholar 

  4. Habiballah, A., Marest, G., Sayouty, E.H., Lassri, H., Krishnan, R.: Magnetic and Mössbauer study of Fe-V-B-Si amorphous metallic ribbons. Phys. Scr. 56, 112–116 (1997)

    Article  ADS  Google Scholar 

  5. Moubah, R., Zamani, A., Olsson, A., Shi, S., Hallén, A., Carlson, S., Arvanitis, D., Nordblad, P., Hjörvarsson, B., Jönsson, P.E.: Soft room-temperature ferromagnetism of carbon-implanted amorphous Fe93Zr7Films. Appl. Phys. Express. 6, 053001 (2013)

    Article  ADS  Google Scholar 

  6. Moubah, R., Boutahar, A., Lassri, H., Dinia, A., Colis, S., Hjörvarsson, B., Jönsson, P.E.: Mater. Lett. 175, 5–8 (2016)

    Article  Google Scholar 

  7. Hasegawa, R.: J. Mag. Magn. Mater. 324, 3555 (2012)

  8. Xu, D.D., Zhou, B.L., Wang, Q.Q., Zhou, J., Yang, W.M., Yuan, C.C., Xue, L., Fan, X.D., Ma, L.Q., Shen, B.L.: Corros. Sci. 138, 20 (2018)

  9. Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  10. Alouhmy, G., Moubah, R., Sayouty, E.H., Lassri, H.: Comparative studies of magnetic and magnetocaloric properties in amorphous Gd0.67Y0.33 and Gd0.67Zr0.33 films. Sol. Stat. Comun. 250, 14–17 (2017)

    Article  ADS  Google Scholar 

  11. Zhang, D.K., Zhao, J.L., Zhang, H.G., Xu, M.F., Yue, M.: J. Supercond. Nov. Magn. 27, 1899 (2014)

    Article  Google Scholar 

  12. Boutahar, A., Lassri, H., Zehani, K., Bessais, L., Hlil, E.K.: Magnetic properties and magnetocaloric effect in amorphous Co35Er65 ribbon. J. Magn. Magn. Mater. 369, 92–95 (2014)

    Article  ADS  Google Scholar 

  13. M’Nassri, R.: Magnetocaloric effect and its implementation in critical behaviour study of La0.67Ca0.33Mn0.9Fe0.1O3. Bull. Mater. Sci. 39, 551–557 (2016)

    Article  Google Scholar 

  14. Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479 (2015)

    Article  ADS  Google Scholar 

  15. Sbissi, K., Kahn, M.L., Ellouze, M., Hlil, E.K., Elhalouani, F.: The magnetic and magnetocaloric properties of Pr1−x Bi x MnO3 (x = 0.2 and 0.4) manganites. J. Supercond. Nov. Magn. 28, 1433–1438 (2015)

    Article  Google Scholar 

  16. Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Itinerant-electron metamagnetic transition and large magnetocaloric effects inLa(FexSi1−x)13compounds and their hydrides. Phys. Rev. B. 67, 104416 (2003)

    Article  ADS  Google Scholar 

  17. Lyubina, J.: Magnetocaloric materials for energy efficient cooling. J. Phys. D. Appl. Phys. 50, 053002 (2017)

    Article  ADS  Google Scholar 

  18. Franco, V., Blazquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012)

    Article  ADS  Google Scholar 

  19. Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  ADS  Google Scholar 

  20. Nazih, M., de Visser, A., Zhang, L., Tegus, O., Bruck, E.: Solid. State. Commun. 126, 255 (2003)

    Article  ADS  Google Scholar 

  21. Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Recent Progress in Exploring Magnetocaloric Materials. Adv. Mater. 21, 4545–4564 (2009)

    Article  Google Scholar 

  22. Tegus, O., Bruck, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150–152 (2002)

    Article  ADS  Google Scholar 

  23. Gschneidner Jr., K.A., Pecharsky, V.K.: Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  24. Provenzano, V., Shapiro, A.J., Shull, R.D.: Erratum: reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature. 429, 853–857 (2004)

    Article  ADS  Google Scholar 

  25. Waske, A., Schwarz, B., Mattern, N., Eckert, J.: Magnetocaloric (Fe–B)-based amorphous alloys. J. Magn. Magn. Mater. 329, 101–104 (2013)

    Article  ADS  Google Scholar 

  26. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)

    Article  Google Scholar 

  27. Becker, J.J., Luborsky, F.E., Walter, J.L.: Magnetic moments and curie temperatures of (Fe, Ni)<inf>80</inf>(P, B)<inf>20</inf>amorphous alloys. IEEE. Trans. Mag. 13, 988–991 (1977)

    Article  ADS  Google Scholar 

  28. Zamani, A., Moubah, R., Ahlberg, M., Stopfel, H., B Arnalds, U., Hallén, A., Hjörvarsson, B., Andersson, G., Jönsson, P.E.: Magnetic properties of amorphous Fe93Zr7films: effect of light ion implantation. J. Appl. Phys. 117, 143903 (2015)

    Article  ADS  Google Scholar 

  29. Luborsky, F.E., Becker, J.J., Walter, J.L.: Sol. Stat. Commun. 24(1977), 231 (1977)

    ADS  Google Scholar 

  30. Ettayfi, A., Moubah, R., Boutahar, A., Hlil, E.K., Lassri, H.: Structural, magnetic, magnetocaloric, and critical exponent properties of La0.67Sr0.33MnO3 powders synthesized by solid-state reaction. J. Supercond. Nov. Magn. 29, 133–138 (2016)

    Article  Google Scholar 

  31. Alouhmy, G., Moubah, R., Berrada, A., Hassanain, N., Bessais, L., Lassri, H.: Magnetic and magnetocaloric properties in amorphous and crystalline Tb0.67 Au0.33 alloys. J. Magn. Magn. Mater. 443(2017), 374–377 (2017)

    Article  ADS  Google Scholar 

  32. Hamad, M.A.: Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106–112 (2012)

    Article  Google Scholar 

  33. Ezaami, A., Sellami-Jmal, E., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Phenomenological model of magnetocaloric effect in La0.7Ca0.2Ba0.1MnO3 manganite around room temperature. J. Supercond. Nov. Magn. 30, 911–916 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moubah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ouahbi, S., Bouhbou, M., Moubah, R. et al. Magnetic, Magnetocaloric Properties, and Phenomenological Model in Amorphous Ni80−xFex(SiB)20 Alloys with (x = 0, 2.4, 8, and 16). J Supercond Nov Magn 32, 2091–2096 (2019). https://doi.org/10.1007/s10948-018-4924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4924-0

Keywords

Navigation