Skip to main content
Log in

Effects of La Doping and Zn or O Vacancy on the Magnetic Property of ZnO

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Research on the magnetic origin and mechanism of La-doped ZnO system has been controversial. To solve this problem, we studied the effects of La doping and Zn or O vacancy on the magnetic property of ZnO using geometry optimization and energy calculation on the basis of first-principle generalized gradient approximation method of density functional theory. The electronic structures and magnetic properties of undoped ZnO, La-doped ZnO system, and systems with coexisting La doping and Zn or O vacancies were calculated. Results showed that the systems of La-doped ZnO and the coexistence of La doping and O vacancy are nonmagnetic. In addition, the system of La replacing Zn and one Zn vacancy exhibits long-range orderly ferromagnetism, and the Curie temperature of the doping system can achieve room temperature. The magnetism source of the systems with La doping and Zn vacancy coexisting in ZnO demonstrates strong hybrid coupling electron exchange effects existing among Zn-4s, Zn-3p, O-2p, and La-5s orbits that are nearest to the Zn vacancy. The next nearest distance between doping and Zn vacancy leads to the lowest formation energy and highest stability under the same doping condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-Blende magnetic semiconductors. Science. 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  2. Tate, N., Kawazoe, T., Nomura, W., Ohtsu, M.: Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions. Sci. Rep. 5, 12762 (2015)

    Article  ADS  Google Scholar 

  3. Yu, Q., Ai, T.T., Jiang, L.Y., Zhang, Y.T., Li, C., Yuan, X.Q.: Efficient energy transfer in Eu-doped ZnO on diamond film. RSC Adv. 4, 53946–53949 (2014)

    Article  Google Scholar 

  4. Dubey, D.K., Singh, D.N., Kumar, S., Nayak, C., Kumbhakar, P., Jha, S.N., Bhattacharya, D., Ghoshc, A.K., Chatterjee, S.: Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Adv. 6, 22852–22867 (2016)

    Article  Google Scholar 

  5. Lü, Y.Y., Zhou, Q., Chen, L., Zhan, W.W., Xie, Z.X., Kuang, Q., Zheng, L.S.: Templated synthesis of diluted magnetic semiconductors using transition metal ion-doped metal–organic frameworks: the case of Co-doped ZnO. Cryst. Eng. Comm. 18, 4121–4126 (2016)

    Article  Google Scholar 

  6. Shi, T.F., Xiao, Z.G., Yin, Z.J., Li, X.H., Wang, Y.Q., He, H.T., Wang, J.N., Yan, W.S., Wei, S.Q.: The role of Zn interstitials in cobalt-doped ZnO diluted magnetic semiconductors. Appl. Phys. Lett. 96, 211905 (2010)

    Article  ADS  Google Scholar 

  7. Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. 62, 1–35 (2008)

    Article  Google Scholar 

  8. Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002)

    Article  ADS  Google Scholar 

  9. Justice, B.H. Jr., Westrum, E.F.: Thermophystcal properties of the lanthanide oxides. I. Heat capacities, thermodynamic properties, and some exergy levels of lanthanum(II1) and neodymium(III) oxides from 5 to 350 K. J. Phys. Chem. 67, 339–345 (1963)

    Article  Google Scholar 

  10. Zhang, X.J., Mi, W.B., Wang, X.C., Bai, H.L.: First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO. J. Allo. Comp. 617, 828–833 (2014)

    Article  Google Scholar 

  11. El Hachimi, A.G., Zaari, H., Benyoussef, A., El Yadari, M., El Kenz, A.: First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide. J. Rare Earth. 32, 715–721 (2014)

    Article  Google Scholar 

  12. Young, S.L., Chen, H.Z., Kao, M.C., Kung, C.Y., Lin, C.C., Lin, T.T., Horng, L., Shih, Y.T., Ou, C., Lin, C.H.: Magnetic properties of La-doped and Cu-doped ZnO nanowires fabricated by hyderothermal method. Int. J. Mod. Phys. B 27, 1362006 (2013)

    Article  ADS  Google Scholar 

  13. Kanoun, M.B., Goumri-Said, S., Schwingenschlögl, U., Manchon, A.: Magnetism in Sc-doped ZnO with zinc vacancies: a hybrid density functional and GGA + U approaches. Chem. Phys. Lett. 532, 96–99 (2012)

    Article  ADS  Google Scholar 

  14. Yan, W.S., Sun, Z.H., Liu, Q.H., Li, Z.R., Pan, Z.Y., Wang, J., Wei, S.Q., Wang, D., Zhou, Y.X., Zhang, X.Y.: Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl. Phys. Lett. 91, 062113 (2007)

    Article  ADS  Google Scholar 

  15. Patterson, C.H.: Role of defects in ferromagnetism in Zn1−xCoxO: a hybrid density-functional study. Phys. Rev. B 74, 144432 (2006)

    Article  ADS  Google Scholar 

  16. Galland, D., Herve, A.: ESR Spectra of the zinc vacancy in ZnO. Phys. Lett. A 33, 1–2 (1970)

    Article  ADS  Google Scholar 

  17. Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (2008)

    Article  ADS  Google Scholar 

  18. Lan, Z.H., Miao, X.J.: Research on the magnetism of yttrium doped zinc oxide film. Appl. Mech. Mater. 513-517, 70–73 (2014)

    Article  Google Scholar 

  19. Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA + U formalism. J. Phys. Chem. C 117, 26029–26039 (2013)

    Article  Google Scholar 

  20. He, H.Y., Huang, J.F., Fei, J., Lu, J.: La-doping content effect on the optical and electrical properties of La-doped ZnO thin films. J. Mater. Sci: Mater Electrons. 26, 1205–1211 (2015)

    Google Scholar 

  21. Shakir, M., Faraz, M., Asif Sherwani, M., Al-Resayes, S.I.: Photocatalytic degradation of the paracetamol drug using lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin. 176, 159–167 (2016)

    Article  Google Scholar 

  22. Lan, W., Liu, Y.P., Zhang, M., Wang, B., Yan, H., Wang, Y.Y.: Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering. Mater. Lett. 61, 2262–2265 (2007)

    Article  Google Scholar 

  23. Sorescu, M., Diamandescu, L., Tarabsanu-Mihaila, D., Teodorescuv, V.S.: Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways. J. Mater. Sci. 39, 675–677 (2004)

    Article  ADS  Google Scholar 

  24. Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B 71, 155205 (2005)

    Article  ADS  Google Scholar 

  25. Li, H.L., Lv, Y.B., Li, J.Z., Yu, K.: Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Allo. Comp. 617, 102–107 (2014)

    Article  Google Scholar 

  26. Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)

    Article  ADS  Google Scholar 

  27. Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L., Rao, K.V.: p-Type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)

    Article  Google Scholar 

  28. Wang, T.W., Bristowe, P.D.: Controlling Ag diffusion in ZnO by donor doping: a first principles study. Acta. Mater. 137, 115–122 (2017)

    Article  Google Scholar 

  29. Zener, C.: Interaction between the d-Shells in the transition metals. II. Ferromagnetic Compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    Article  ADS  Google Scholar 

  30. Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010)

    Article  ADS  Google Scholar 

  31. Jayachandraiah, C., Krishnaiah, G.: Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. J. Mater. Sci. 52, 7058–7066 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61366008 and 61664007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W.L., Hou, Q.Y., Jia, X.F. et al. Effects of La Doping and Zn or O Vacancy on the Magnetic Property of ZnO. J Supercond Nov Magn 31, 3297–3305 (2018). https://doi.org/10.1007/s10948-018-4597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4597-8

Keywords

Navigation