Skip to main content
Log in

Effects of Co Doping and Point Defect on the Ferromagnetism of ZnO

  • Review Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effects of different doping proportions of Co doping and oxygen vacancies (VO) on the ferromagnetism of zinc oxide (ZnO) are controversial. To solve this problem, we investigated the effects of Co doping and point defects (VO, VZn, Hi, and Zni) on the ferromagnetism of ZnO through first-principle calculations by using generalized gradient approximation + U (GGA + U) under density functional theory. Results show that the closer the distance between Co and vacancies (VO or VZn), the lower the formation energy and the more stable the system will be. Co-doped ZnO with VO or VZn exhibits long-range ordered ferromagnetism and Curie temperature above the room temperature. Especially, Co-doped ZnO with VZn shows a half-metallic behavior, resulting in 100% conduction hole polarizability, which is highly beneficial for dilute magnetic semiconductors (DMSs) as a hole injection source. The ferromagnetism of Zn14CoO16 is caused by the double exchange effects among the electrons of the O–2p, Co–3d, and Zn–3d orbits mediated by the hole carriers after complexes were formed by the Co doping and Zn vacancy. Similarly, the origin of ferromagnetism in Zn15CoO15 is derived from the double exchange effects among the electrons of O–2p, Co–3d, and Zn–4s states mediated by the electron carriers after complexes were formed by the Co doping and O vacancy. In addition, the result shows that Co-doped ZnO with interstitial H (Hi) or Zn (Zni) is unfavorable for ferromagnetism and should be avoided experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Sci. 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  2. Vijayaprasath, G., Murugan, R., Ravi, G., Mahalingam, T., Hayakawa, Y.: Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method. Appl. Surf. Sci. 313, 870–876 (2014)

    Article  Google Scholar 

  3. Azab, A.A., Ateia, E.E., Esmail, S.A.: Comparative study on the physical properties of transition metal- doped (Co, Ni, Fe, and Mn) ZnO nanoparticles. Appl. Phys. A. 124(469), (2018)

  4. Khan, R.Z., Araujo, C.I.L., Khan, T., Rahman, M.U., Rehman, Z.U., Khan, A., Ullah, B., Fashu, S.: Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) Co-doped ZnO nanostructures. J. Mater. Sci: Mater. El. 29, 9785–9795 (2018)

    Google Scholar 

  5. Franco Jr., A., Pessoni, H.V.S., Ribeiro, P.R.T., Machado, F.L.A.: Magnetic properties of Co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 426, 347–350 (2017)

    Article  ADS  Google Scholar 

  6. Vijayaprasath, G., Murugan, R., Mahalingam, T., Ravi, G.: Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J. Mater. Sci: Mater. El. 26, 7205–7213 (2015)

    Google Scholar 

  7. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630 (2004)

    Article  ADS  Google Scholar 

  8. Xu, X., Xu, C., Dai, J., Hu, J., Li, F., Zhang, S.: Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles. J. Phys. Chem. C. 116, 8813–8818 (2012)

    Article  Google Scholar 

  9. Kittelstved, K.R., Liu, W.K., Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006)

    Article  ADS  Google Scholar 

  10. Xing, G.Z., Lu, Y.H., Tian, Y.F., Yi, J.B., Lim, C.C., Li, Y.F., Li, G.P., Wang, D.D., Yao, B., Ding, J.: Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example. AIP Adv. 1, 022152 (2011)

    Article  ADS  Google Scholar 

  11. Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T., Brauer, G.: Phys. Rev. B: Defect-induced magnetic order in pure ZnO films. Condens. Matter Mater. Phys. 035331, 80 (2009)

    Google Scholar 

  12. Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater.Sci. Eng. R. 62, 1–35 (2008)

    Article  Google Scholar 

  13. Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys.Lett. 81, 4020–4022 (2002)

    Article  ADS  Google Scholar 

  14. Wang, D.D., Zhao, B., Qi, N., Chen, Z.Q., Kawasuso, A.: Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam. J. Mater. Sci. 52, 7067–7076 (2017)

    Article  ADS  Google Scholar 

  15. Zhang, H.Y., Hao, W., Cao, Y.Q., Chang, X.F., Xu, M.X., Guo, X.L., Shen, K., Xiang, D.H., Xu, Q.Y.: Room temperature ferromagnetic Zn 0.98 Co 0.02 O powders with improved visible-light photocatalysis. RSC Adv. 6, 6761–6767 (2016)

    Article  Google Scholar 

  16. Zhang, H., Cao, Y.Q., Yang, Z.X., Si, L.F., Zhong, W., Wu, D., Xu, M.X., Xu, Q.Y.: Enhanced room temperature ferromagnetism in Co-doped ZnO mediated by interstitial H. Mater. Lett. 89, 209–211 (2012)

    Article  Google Scholar 

  17. Lina, Y.J., Wang, M.S., Liub, C.J., Huang, H.J.: Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films. Appl. Surf. Sci. 256, 7623–7627 (2010)

    Article  ADS  Google Scholar 

  18. Liu, S.Y., Li, G.J., Jia, B.H., Tian, R.X., Wang, Q.: Effect of high magnetic field on magnetic properties of oxidized ZnO:Co film prepared with different growth models. AIP Adv. 7, 115122 (2017)

    Article  ADS  Google Scholar 

  19. Valério, L.R., Mamani, N.C., Zevallos, A.O., Mesquita, A., Bernardi, M.I.B., Doriguetto, A.C., Carvalho, H.B.: Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films. RSC Adv. 7, 20611–20619 (2017)

    Article  Google Scholar 

  20. Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+U formalism. J. Phys.Chem.C. 117, 26029–26039 (2013)

    Article  Google Scholar 

  21. Shi, L.B., Qi, G.Q., Fei, Y.: Defect formation and magnetic properties of Co-doped ZnO nanowires. Nano. 8, 1350021 (2013)

    Article  Google Scholar 

  22. Wang, S., Li, P., Liu, H., Li, J.B., Wei, Y.: The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels. J. Alloy. Compd. 505, 362–366 (2010)

    Article  Google Scholar 

  23. Sarsari, I.A., Salamati, H., Kameli, P., Razavi, F.S.: Optical, structural, and magnetic properties of ZnO:Co nanoparticles prepared by a thermal treatment of ball milled precursors. J. Supercond. Nov. Magn. 24, 2293–2298 (2011)

    Article  Google Scholar 

  24. Patterson, C.H.: Role of defects in ferromagnetism in Zn1-xCoxO: a hybrid density-functional study. Phys. Rev. B. 74(144432), (2006)

  25. Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B. 71(155205), (2005)

  26. Na, P.S., Smith, M.F., Kim, K., Du, M.H., Wei, S.H., Zhang, S.B., Limpijumnong, S.: First-principles study of native defects in anatase TiO2. Phys. Rev. B. 73(125205), (2006)

  27. Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)

    Article  ADS  Google Scholar 

  28. Assadi, M.H.N., Zhang, Y.B., Li, S.: The role of unintentional hydrogen on magnetic properties of Co doped ZnO. AIP. Conf. Proc. 1399, 693–694 (2011)

    Article  ADS  Google Scholar 

  29. Schwartz, D.A., Gamelin, D.R.: Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. ADV. Mater.A. 16, 2115–2119 (2004)

    Article  Google Scholar 

  30. Lardjane, S., Merad, G., Fenineche, N., Billard, A., Faraoun, H.I.: Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties. J. Alloy. Compd. 551, 306–311 (2013)

    Article  Google Scholar 

  31. Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L., Rao, K.V.: P-type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)

    Article  Google Scholar 

  32. Pan, Q.T., Huang, K., Ni, S.B., Yang, F., Lin, S.M., He, D.Y.: Photoluminescence and magnetism in Co-doped ZnO powder. J. Phys. D. Appl. Phys. 40, 6829–6833 (2007)

    Article  ADS  Google Scholar 

  33. Sato, K., Dederichs, P.H., Katayama, Y.H.: Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003)

    Article  ADS  Google Scholar 

  34. Devi, A.A.S., Roqan, I.S.: The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary. RSC Adv. 6, 50818–50824 (2016)

    Article  Google Scholar 

  35. Simimol, A., Anappara, A.A., Weber, S.G., Chowdhury, P., Barshilia, H.C.: Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J. Appl. Phys. 117, 214310 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 61366008, 61664007) and the Science and Technology Major Project of Inner Mongolia Autonomous Region (2018-810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Hou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q.Y., Liu, Y.J. Effects of Co Doping and Point Defect on the Ferromagnetism of ZnO. J Supercond Nov Magn 32, 1135–1142 (2019). https://doi.org/10.1007/s10948-018-4987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4987-y

Keywords

Navigation