Skip to main content
Log in

Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1Mg x Zn0.9−x Fe2O4 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A series of single-phase spinel cubic structure Mn-Zn ferrites with the general formula Mn0.1Mg x Zn0.9−x Fe2O4 were prepared by a ceramic method. Mg content improves the crystallinity of Mn-Zn ferrites. The formula of the cation distribution for Mn-Zn ferrites was suggested at different Mg contents showing a good agreement between the theoretical and experimental structural data. The bulk density of the samples decreases by increasing the Mg content. The porosity of ferrite samples is increased from 16.7 to 19% by increasing the Mg content. Scanning electron microscopy (SEM) reveals that the grain diameter of Mn-Zn system decreases with Mg content. ESR measurements show that the resonance field, line width, and dielectric loss increase with Mg content. On the contrary, splitting factor and experimental magnetic moment decrease with Mg content. Thermo-electric power measurements indicate that the preponderance carriers are holes and localized to the lattice. The change of structure and properties of the ferrite samples are accurately observed with high sensitivity using positron annihilation spectroscopy (PAS) techniques. The results reveal that there are strong correlations between the PAS parameters and some parameters of ESR. It is suggested that PAS can be exploited as a powerful technique for characterizing magnetic material such as ferrite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Goldman, A.: Handbook of modern ferrite technology. Kluwer Academic, USA (1999)

    Google Scholar 

  2. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: J. Supercond. Nov. Magn. 29, 2451–2453 (2016)

  3. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: AIP Adv. 5, 107131 (2015)

    Article  ADS  Google Scholar 

  4. Tawfik, A., Hemeda, O.M., El-Sayed, A.H., Hamad, M.A., Yu, J., Jiang, L., Che, S.: J. Supercond. Nov. Magn. 29, 2085 (2015)

  5. Hamad, M.A., El-Sayed, A.H., Hemeda, O.M., Tawfik, A.: Mater. Res. Express 3, 036104 (2016)

  6. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: J. Magn. Magn. Mater. 402, 105 (2016)

    Article  ADS  Google Scholar 

  7. Hemeda, O.M., El-Sayed, A.H., Tawfik, A., Hamad, M.A.: Mater. Res. Express 3, 075302 (2016)

    Article  ADS  Google Scholar 

  8. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: Phase Transitions (2016). doi:10.1080/01411594.2016.1198794

  9. Li, M., Fang, H., Li, H., Zhao, Y., Li, T., Pang, H., Tang, J., Liu, X.: Synthesis and characterization of MnZn ferrite nanoparticles with improved saturation magnetization. J. Supercond. Nov. Magn. (2017). doi:10.1007/s10948-017-4013-9

  10. Karthick, R., Ramachandran, K., Srinivasan, R.: AIP Conf. Proc. 1731, 130054 (2016)

    Article  Google Scholar 

  11. Ying, Y., Gong, Y., Liu, D., Li, W., Yu, J., Jiang, L., Che, S.: Effect of MoO3 addition on the magnetic properties and complex impedance of Mn–Zn ferrites with high Bs and high initial permeability. J. Supercond. Nov. Magn. (2017). doi:10.1007/s10948-017-4002-z

  12. Beatrice, C., Tsakaloudi, V., Dobak, S., Zaspalis, V., Fiorillo, F.: J. Magn. Magn. Mater. (2006)

  13. Angadi, V.J., Anupama, A.V., Choudhary, H.K., Kumar, R., Somashekarappa, H.M., Mallappa, M., Rudraswamy, B., Sahoo, B.: J. Solid State Chem. 246, 119–124 (2017)

    Article  ADS  Google Scholar 

  14. Nambissan, P.M.G., Upadhyay, C., Verma, H.C.: J. Appl. Phys. 93, 6320–6326 (2003)

    Article  ADS  Google Scholar 

  15. Hemeda, O.M., Mahmoud, K.R., Sharshar, T., Elsheshtawy, M., Hamad, M.A.: J. Magn. Magn. Mater. 429, 124–128 (2017)

    Article  ADS  Google Scholar 

  16. Hassan, H.E., Sharshar, T., Hessien, M.M., Hemeda, O.M.: Nucl. Instr. Meth. B 304, 72–79 (2013)

    Article  ADS  Google Scholar 

  17. Austin, L.G., Mott, N.F.: Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  18. Hemeda, O.M., Tawfik, A., Hemeda D.M., Elsheekh, A.M.: J. Magn. Magn. Mater. 390, 70–77 (2015)

    Article  ADS  Google Scholar 

  19. Sharshar, T., Hussein, M.L.: Nucl. Instr. Meth. A 546, 584–590 (2005)

    Article  ADS  Google Scholar 

  20. Kansy, J.: Nucl. Instr. Meth. A 374, 235–244 (1996)

    Article  ADS  Google Scholar 

  21. Klym, H., Ingram, A.: J. Phys.: Conf. Ser. 79, 012014 (2007)

    Google Scholar 

  22. Hautojärvi, P.: Positrons in solids. Springer, Berlin (1979)

    Book  Google Scholar 

  23. Schmidtm, M., Maurer, F.H.J.: Polymer 41, 8419 (2000)

    Article  Google Scholar 

  24. Abdel-Rahman, M.A., Abdel-Rahman, M., Abo-Elsoud, M., Eissa, M.F., Lotfy, Y.A., Badawi, E.A.: Prog. Phys. 3, 66 (2006)

    Google Scholar 

  25. El-Sayed, A.M.: Ceram. Int. 28, 651–655 (2002)

    Article  Google Scholar 

  26. Abdul Samee Fawzi, A.D., Sheikh, V.L.: Mathe J. Alloys Compd. 502, 231–237 (2010)

    Article  Google Scholar 

  27. Hemeda, O.M.: J. Magn. Magn. Mater. 251, 50–60 (2002)

    Article  ADS  Google Scholar 

  28. Sparks, M.: J. Appl. Phys. 36, 1570 (1963)

    Article  ADS  Google Scholar 

  29. Srivastova, G., Patni, M., Nandikar, N.J.: J. Phys. 38, 267 (1977)

    Google Scholar 

  30. Galt, J.K.: Bell Syst. Tech. J. 33, 1023 (1954)

    Article  Google Scholar 

  31. Clogston, A.M.: Bell Syst. Tech. J. 34, 739 (1955)

    Article  Google Scholar 

  32. Samy, A.M., Gomaa, E., Mostafa, N.: Open Ceram. Sci. J. 1, 1–4 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, K., Hemeda, O.M., Sharshar, T. et al. Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1Mg x Zn0.9−x Fe2O4 Ceramics. J Supercond Nov Magn 30, 3143–3154 (2017). https://doi.org/10.1007/s10948-017-4126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4126-1

Keywords

Navigation