Skip to main content
Log in

Dual-Wavelength and Passively Q-Switched Nd :GdVO4 Lasers Operated at 1.34 μm Under 880 nm Diode Pumping

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We report continuous-wave (CW) and passively Q-switched Nd :GdVO4 lasers on 4F3/24I13/2 transition directly pumped by an 880 nm diode laser. A widely investigated Nd :GdVO4 laser at about 1341 nm is operated with a maximum output power of 5.23 W and a slope efficiency of about 30.6%. Using an etalon for wavelength selection, we realize laser emission at about 1344 nm, for the first time to our knowledge, in a Nd :GdVO4 laser, with a maximum output power of 4.19 W and a slope efficiency of 20.1%. Moreover, we achieve simultaneous dual-wavelength lasing at 1341 and 1344 nm with a maximum output power of 2.27 W and a slope efficiency of 13.5%, respectively. Using V3+ :YAG as a saturable absorber, stable Q switching is obtained at about 1341 nm with a maximum average output power of 1.15 W. The pulse width is 52.8 ns at a repetition rate of 279.8 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Moncorgé, B. Chambon, J. Y. Rivoire, et al., Opt. Mater., 8, 109 (1997).

    Article  ADS  Google Scholar 

  2. A. Saha, A. Ray, S. Mukhopadhyay, et al., Opt. Express, 29, 4721 (2006).

    Article  ADS  Google Scholar 

  3. C. G. Bethea, IEEE J. Quantum Electron., 9, 254 (1973).

    Article  ADS  Google Scholar 

  4. H. Y. Shen, R. R. Zeng, Y. P. Zhou, et al., Appl. Phys. Lett., 56, 1937 (1990).

    Article  ADS  Google Scholar 

  5. Z. Lin, X. X. Huang, J. L. Lan, et al., IEEE Photon. J., 8, 1500808 (2016).

    Google Scholar 

  6. H. F. Lin, H. Y. Zhang, W. Z. et al., IEEE Photon. J., 8, 1506908 (2017).

  7. G. Shayeganrad and L. Mashhadi, Appl. Phys. B, 111, 189 (2013).

    Article  ADS  Google Scholar 

  8. B. Xu, Y. Wang, Z. Lin, et al., Appl. Opt., 55, 42 (2016).

    Article  ADS  Google Scholar 

  9. B. Xu, Y. Wang, Z. Lin, et al., Opt. Laser Technol., 81, 1 (2016).

    Article  ADS  Google Scholar 

  10. Y. Lü, J. Xia, J. Zhang, et al., Appl. Opt., 53, 5141 (2014).

    Article  ADS  Google Scholar 

  11. F. Zhang, J. Liu, W. Li, et al., Opt. Eng., 55, 106114 (2016).

    Article  ADS  Google Scholar 

  12. P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, et al., Quantum Electron., 25, 1162 (1995).

    Article  ADS  Google Scholar 

  13. C. P. Wyss, W. Luthy, H. P. Weber, et al., Appl. Phys. B, 68, 659 (1999).

    Article  ADS  Google Scholar 

  14. H. Zhang, X. Meng, J. Liu, et al., J. Cryst. Growth, 216, 367 (2000).

    Article  ADS  Google Scholar 

  15. C. Wang, J. Liu, Y. Zu, et al., Opt. Quantum Electron., 50, 122 (2018).

    Article  Google Scholar 

  16. Y. Wang, Z. Qu, J. Liu, et al., Lightw. Technol., 30, 3259 (2012).

    Article  ADS  Google Scholar 

  17. J. L. He, J. Du, J. Sun, et al., Appl. Phys. B, 79, 301 (2004).

    Article  Google Scholar 

  18. K. Lunstedt, N. Pavel, K. Petermann, et al., Appl. Phys. B, 86, 65 (2007).

    Article  ADS  Google Scholar 

  19. B. Wu, P. Jiang, D. Yang, et al., Opt. Express, 17, 6004 (2009).

    Article  ADS  Google Scholar 

  20. Z. P. Wang, IEEE Trans. Geosci. Remote Sens., 1, 1 (2002).

    Google Scholar 

  21. K. L. Vodopyanov, M. M. Fejer, X. Yu, et al., Appl. Phys. Lett., 89, 141119 (2006).

    Article  ADS  Google Scholar 

  22. M. Ross, Proc. IEEE, 56, 196 (1968).

    Article  Google Scholar 

  23. R. Lavi, S. Jackel, A. Tal, et al., Opt. Commun., 195, 427 (2001).

    Article  ADS  Google Scholar 

  24. M. Li, W. Zhao, W. Hou, et al., Appl. Phys. B, 106, 593 (2012).

    Article  ADS  Google Scholar 

  25. V. Lupei, N. Pavel, Y. Sato, et al., Opt. Lett., 28, 2366 (2003).

    Article  ADS  Google Scholar 

  26. E. Herault, F. Balembois, and P. Georges, Opt. Lett., 31, 2731 (2006).

    Article  ADS  Google Scholar 

  27. M. Nadimi, T. Waritanant, and A. Major, Appl. Phys. B, 124, 170 (2018).

    Article  ADS  Google Scholar 

  28. M. Nadimi, T. Waritanant, and A. Major, Laser Phys. Lett., 15, 055002 (2018).

    Article  ADS  Google Scholar 

  29. Y. F. Chen, Y. P. Lan, and H. L. Chang, IEEE J. Quantum Electron., 37, 462 (2001).

    Article  ADS  Google Scholar 

  30. B. Braun, F. X. Kartner, G. Zhang, et al., Opt. Lett., 22, 381 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Lin.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Lin, H., Mu, R. et al. Dual-Wavelength and Passively Q-Switched Nd :GdVO4 Lasers Operated at 1.34 μm Under 880 nm Diode Pumping. J Russ Laser Res 43, 482–488 (2022). https://doi.org/10.1007/s10946-022-10073-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10073-y

Keywords

Navigation