Skip to main content
Log in

Generation of a 294.2 nm Ultraviolet Beam Through Frequency Doubling in a BaB2O4 Crystal

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a 294.2 nm all-solid-state Q-switched laser, with 241.4 mW average output power, produced by frequency doubling of a 588.4 nm laser. The 588.4 nm laser is obtained by intracavity sum-frequency generation of a 1064 nm laser and a 1319 nm laser. By synchronizing the fundamental lasers and adjusting the focal length of the focusing lens, average output powers of 10.2 W at 588.4 nm and 241.4 mW at 294.2 nm with 297 ns pulse width are obtained at 6 kHz frequency. The 294.2 nm laser beam quality \( {\mathrm{M}}_X^2 \) = 1.18 and \( {\mathrm{M}}_Y^2 \) = 1.26 for the X and Y directions, respectively. To the best of our knowledge, this is the highest power of all-solid-state Q-switched laser at 294.2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kuryak and B. A. Tikhomirov, Quantum Electron., 50, 876 (2020).

    Article  ADS  Google Scholar 

  2. M. Rui, L. Pereira, T. Paixao, et al., Opt. Express, 27, 38039 (2019).

    Article  ADS  Google Scholar 

  3. B. Behera and P. Das, Chem. Phys. Lett., 774, 138601 (2021).

  4. S. J. Park, J. H. Song, and G. A. Lee, Adv. Mat. Res., 490, 238 (2012).

    Google Scholar 

  5. L. R. Kong, F. Zhang, J. Duan, et al., Laser Technol., 38, 330 (2014).

    Google Scholar 

  6. S. D. Alaruri, Optik, 181, 239 (2019).

    Article  ADS  Google Scholar 

  7. C. D. Marshall, J. A. Speth, S. A. Payne, et al., J. Opt. Soc. Am. B, 11, 2054 (1994)

    Article  ADS  Google Scholar 

  8. M. A. Dubinskii, K. L. Schepler, R. Y. Abdulsabirov, and S. L. Korableva, “Tunable UV Ce:LiCAF Injection-Seeded Laser for High Spectral Brightness Applications,” Advanced Solid State Lasers Conference, Optical Society of America, Coeur d’Alene (1998); https://doi.org/10.1364/ASSL.1998.UL2

  9. M. Fallahi, L. Fan, Y. Kaneda, et al., IEEE Photon. Technol. Lett., 20, 1700 (2008).

    Article  ADS  Google Scholar 

  10. Y. Kaneda, M. Fallahi, J. Hader, et al., Opt. Lett., 34, 3511 (2009).

    Article  ADS  Google Scholar 

  11. G. P. Lin and N. Yu, Opt. Express, 22, 557 (2014).

    Article  ADS  Google Scholar 

  12. M. A. Khan, N. Maeda, M. Jo, et al., J. Mat. Chem. C, 7, 143 (2018).

    Article  Google Scholar 

  13. Y. Liu, Z. J. Liu, Z. H. Cong, et al., Opt. Laser Technol., 81, 184 (2016).

    Article  ADS  Google Scholar 

  14. K. S. Chaitanya, C. J. Canals, B. E. Sanchez, et al., Opt. Lett., 40, 2397 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Zheng, Q., Wang, Y. et al. Generation of a 294.2 nm Ultraviolet Beam Through Frequency Doubling in a BaB2O4 Crystal. J Russ Laser Res 43, 334–338 (2022). https://doi.org/10.1007/s10946-022-10056-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10056-z

Keywords

Navigation