Skip to main content
Log in

Effect of Stark Shift on a System of Two Superconducting Qubits Coupled with a Coherent Radiation Field

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Two superconducting (SC) qubits interacting with a radiation field in the coherent state (CS) in the presence of Stark shift are investigated. The density matrix is expressed in terms of the wave function to describe the proposed system. Physical properties, such as the geometric phase, linear entropy, and negativity are used to describe the behavior of the system. The effects of the Stark shift and the initial state on the linear entropy, geometric phase, and nonclassical correlation are discussed. Thermal and magnetic field interactions are also examined during the time evolution of the two SC qubits. By raising the temperature and decreasing the qubit–qubit entanglement, the nonclassical connection between the CS field and the two SC qubits is strengthened. Moreover, the Stark shift considerably affects the dynamical and physical properties of both types of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Valverde, A. T. Avelar, and B. Baseia, Physica A, 390, 4045 (2011).

    Article  ADS  Google Scholar 

  2. E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963)

    Article  Google Scholar 

  3. F. W. Cummings, Phys. Rev., 140, A1051 (1965).

    Article  ADS  Google Scholar 

  4. M. J. Faghihi, M. K. Tavassoly, and M. Bagheri, Laser Phys., 24, 045202 (2014).

    Article  ADS  Google Scholar 

  5. T. M. El-Shahat, S. Abdel-Khalek, and A.-S. F. Obada, Chaos, Solitons & Fractals, 26, 1293 (2005).

    Google Scholar 

  6. S. Cordero and J. Récamier, J. Phys. A, 45, 385303 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  7. O. de los Santos-Sánchez and J. Récamier, J. Phys. B: At. Mol. Opt. Phys., 45, 015502 (2012).

    Article  ADS  Google Scholar 

  8. A.-S. F. Obada, M. S. Abdalla, and E. M. Khalil, Physica A, 336, 433 (2004).

    Article  ADS  Google Scholar 

  9. M. S. Abdalla, E. M. Khalil, A.-S. F. Obada, et al., AIP Adv., 7, 015013 (2017).

    Article  ADS  Google Scholar 

  10. S. Abdel-Khalek, Y. S. El-Saman, I. Mechai, and M. Abdel-Aty, Brazil. J. Phys., 48, 9 (2018).

    Article  ADS  Google Scholar 

  11. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambrige University Press (2000).

  12. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin (2000).

    Book  Google Scholar 

  13. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932), Ch. V.

  14. S. Abdel-Khalek and A.-S. F. Obada, Ann. Phys., 325, 2542 (2010).

    Article  ADS  Google Scholar 

  15. S. Sarkar, J. Phys. Soc. Jpn., 83, 104003 (2014).

    Article  ADS  Google Scholar 

  16. A.-B. A. Mohamed, Eur. Phy. J. D, 71, 261 (2017).

    Article  ADS  Google Scholar 

  17. E. M. Khalil, Int. J. Mod. Phys. B, 30, 5143 (207).

  18. Hanaa H. Abu-Zinadah and S. Abdel-Khalek, Results Phys., 7, 4318 (2017).

    Article  ADS  Google Scholar 

  19. M. S. Abdalla, E. M. Khalil, and S. I. Ali, J. Russ. Laser Res., 35, 408 (2014).

    Article  Google Scholar 

  20. A.-S. F. Obada, E. M. Khalil, and M. M. A. Ahmed, J. Mod. Opt., 53, 1149 (2006).

    Article  ADS  Google Scholar 

  21. S. Pancharatnam, Proc. Indian Acad. Sci. A, 44, 247 (1956).

    Article  MathSciNet  Google Scholar 

  22. M. V. Berry, Proc. R. Soc. London A, 329, 45 (1984).

    ADS  Google Scholar 

  23. B. Simon, Holonomy, Phys. Rev. Lett., 51, 2167 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Berger, Phys. Rev. B, 85, 22 (2012).

    Google Scholar 

  25. C. Song, Nature Commun., 8, 1061 (2017).

    Article  ADS  Google Scholar 

  26. G. R. Zeng, Y. Jiang, Z. Q. Chen, and Y. Yu, Int. J. Theor. Phys., 54, 1617 (2015).

    Article  Google Scholar 

  27. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press (2002).

  28. H. Carmichael, An Open Systems Approach to Quantum Optics, Springer, Berlin (1993).

    Book  Google Scholar 

  29. A. F. Al-Naim, J. Y. Khan, S. Abdel-Khalek, and E. M. Khalil, Microelectron. J., 86, 15 (2019).

    Article  Google Scholar 

  30. A. Peres, Phys. Rev. Lett., 77, 1413 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Horodecki, Phys. Lett. A, 232, 333 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  33. E. M. Khalil, S. Abdel-Khalek, and S. Al-Awfi, J. Russ. Laser Res., 39, 505 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shatha A. Aldaghfag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldaghfag, S.A. Effect of Stark Shift on a System of Two Superconducting Qubits Coupled with a Coherent Radiation Field. J Russ Laser Res 41, 291–299 (2020). https://doi.org/10.1007/s10946-020-09878-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09878-6

Keywords

Navigation