Skip to main content
Log in

Experimental Study on Brillouin Erbium Fiber Laser: Configuration and Characteristics

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We carry out the experimental study on Brillouin erbium fiber laser in two different structure configurations. In the first configuration, Brillouin pump laser directly stimulates the Brillouin scattering light, whilst in the second it gets pre-amplification before stimulating the Brillouin scattering light in silica optical fiber. Employing distributed-feedback fiber laser as the Brillouin pump laser, we get the Brillouin erbium fiber lasers having subhundred Hertz linewidth. The first configuration has a higher pump threshold and a higher maximum output power, which is over 20 mW for a 250 mW 980 nm pump. The second configuration with pre-amplification for Brillouin pump laser has a lower pump threshold and a smaller maximum output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cranch and D. Kirkendall, IEEE Photon. Tech. Lett., 15, 1579 (2003).

    Article  ADS  Google Scholar 

  2. C. Wang, C. Wang, Y. Shang, et al., Opt. Commun., 346, 172 (2015).

    Article  ADS  Google Scholar 

  3. RIO PlanexTM External Cavity Laser [http://www.rio-lasers.com/products/planex.html].

  4. A. C. Wong, D. Chen, H. J. Wang, et al., Meas. Sci. Technol., 22, 045202 (2011).

  5. Q. Li, F. Yan, W. Peng, et al., Laser Phys. Lett., 10, 095105 (2013).

  6. KOHERAS Basik Low-Noise Single-Frequency OEM Lasers [https://www.nktphotonics.com/lasersfibers/product/koheras-basik-low-noise-single-frequency-oem-laser-modules/]

  7. S. P. Smith, F. Zarinetchi, and S. Ezekiel, Opt. Lett., 16, 393 (1991).

    Article  ADS  Google Scholar 

  8. A. Debut, S. Randoux, and J. Zemmouri, Phys Rev. A, 62, 023803 (2000).

  9. A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B, 18, 556 (2001).

    Article  ADS  Google Scholar 

  10. H. Hu and P. Xiao, Scientia Sinica: Physica, Mechianica & Astronomica, 42, 731 (2012).

    Google Scholar 

  11. H. Ahmad, N. Razak, M. Zulkifli, et al., Laser Phys. Lett., 10, 105105 (2013).

    Article  ADS  Google Scholar 

  12. S. Harun, S. Shahi, and H. Ahmad, Opt. Lett., 34, 46 (2009).

    Article  ADS  Google Scholar 

  13. M. Chen, Z. Meng, Q. Sun, et al., Opt. Express, 22, 15039 (2014).

    Article  ADS  Google Scholar 

  14. M. Chen, Z. Meng, Y. Zhang, et al., IEEE Photon. J., 7, 1500606 (2015).

    Google Scholar 

  15. M. Chen, Z. Meng, X. Tu, and H. Zhou, Opt. Lett., 38, 2041 (2013).

    Article  ADS  Google Scholar 

  16. M. Chen, C. Wang, J. Wang, et al., Opt. Express, 25, 19216 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qi.

Additional information

Manuscript submitted by the authors in English first on February 24, 2020 and in final form on March 29, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Li, Y., Song, Z. et al. Experimental Study on Brillouin Erbium Fiber Laser: Configuration and Characteristics. J Russ Laser Res 41, 250–257 (2020). https://doi.org/10.1007/s10946-020-09872-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09872-y

Keywords

Navigation