Skip to main content
Log in

Superradiance with Incoherent Nonradiative Decay

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We describe superradiance of a few emitters in a dissipative environment with nonradiative decay in the Schrödinger approach, which is simpler than the density matrix formalism. We find that superradiance increases the quantum efficiency of the radiation if the baths, responsible for dissipation, do not come to equilibrium. The reason is that decoherence destroys Dicke “dark” states, lets emitters radiate, and does not affect the fast radiation from “bright” Dicke states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. A, 93, 99 (1954).

    Article  ADS  Google Scholar 

  2. M. Gross and S. Haroche, Phys. Rep. (Rev. Sec. Phys. Lett.), 93, 301 (1982).

    ADS  Google Scholar 

  3. L. I. Men’shikov, Phys. Usp., 42, 107 (1999).

    Article  ADS  Google Scholar 

  4. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms, Courier Corporation (1987).

  5. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge (1997).

    Book  Google Scholar 

  6. B. M. Garrawy, Philos. Trans. R. Soc. A, 369, 1137 (2011).

    Article  ADS  Google Scholar 

  7. T. V. Shahbazyan and V. N. Pustovit, Appl. Phys. A, 103, 755 (2011).

    Article  ADS  Google Scholar 

  8. I. E. Protsenko, A. V. Uskov, Xue-Wen Chen, et al., J. Phys. D: Appl. Phys., 50, 254003 (2017).

    Article  ADS  Google Scholar 

  9. P. Tighineanu, R. S. Daveau, T. B. Lehmann, et al., Phys. Rev. Lett., 116, 163604 (2016).

    Article  ADS  Google Scholar 

  10. S. Kreinberg, W. W. Chow, J. Wolters, et al., Light: Sci. Appl., 6, e17030 (2017).

    Article  Google Scholar 

  11. I. Protsenko, E. C. André, A. Uskov, et al., “Collective effects in nanolasers explained by generalized rate equations,” arXiv:1709.08200v3 [quant-ph] (2017).

  12. J. A. Mlynek, A. A. Abdumalikov, C. Eichler, et al., Nature Commun., 5, 5186 (2014).

    Article  Google Scholar 

  13. E. Mascarenhas, D. Gerace, M. F. Santos, et al., Phys. Rev. A, 88, 063825 (2013).

    Article  ADS  Google Scholar 

  14. A. N. Oraevskii, Phys. Usp., 37, 393 (1994).

    Article  ADS  Google Scholar 

  15. Th. Richter, Ann. Phys. (Leipzig), 36, 266 (1979).

    Article  ADS  Google Scholar 

  16. P. W. Milonni and P. L. Knight, Phys. Rev. A, 10, 1096 (1974).

    Article  ADS  Google Scholar 

  17. I. E. Protsenko, J. Exp. Theor. Phys., 103, 167 (2006).

    Article  ADS  Google Scholar 

  18. V. A. Belyakov, V. A. Burdov, D. M. Gaponova, et al., Phys. Solid State, 46, 27 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Protsenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protsenko, I.E., Uskov, A.V. Superradiance with Incoherent Nonradiative Decay. J Russ Laser Res 39, 401–410 (2018). https://doi.org/10.1007/s10946-018-9734-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-018-9734-0

Keywords

Navigation