Skip to main content

Advertisement

Log in

Modeling Tests Based on the Eberhard Inequality

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Last year, the first experimental tests closing the detection loophole (also referred to as the fair sampling loophole) were performed by two experimental groups, one in Vienna and the other one in Urbana-Champaign. To violate the Bell-type inequalities (the Eberhard inequality in the first test and the Clauser–Horne inequality in the second test), one has to optimize a number of parameters involved in the experiment (angles of polarization beam splitters and quantum state parameters). We study this problem for the Eberhard inequality in detail, using the advanced method of numerical optimization, namely, the Nelder–Mead method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1987).

  2. M. Giustina, Al. Mech, S. Ramelow, et al., Nature, 497, 227 (2013).

    Article  ADS  Google Scholar 

  3. B. G. Christensen, K. T. McCusker, J. Altepeter, et al., Phys. Rev. Lett., 111, 1304 (2013).

    Google Scholar 

  4. J. Kofler, S. Ramelow, M. Giustina, and A. Zeilinger, “On Bell violation using entangled photons without the fair-sampling assumption,” arXiv: 1307.6475 [quant-ph].

  5. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).

    Article  ADS  Google Scholar 

  6. J. F. Clauser and M. A. Horne, Phys. Rev. D, 10, 526 (1974).

    Article  ADS  Google Scholar 

  7. J. F. Clauser and A. Shimony, Rep. Prog. Phys., 41, 1881 (1978).

    Article  ADS  Google Scholar 

  8. A. Shimony, “Bell’s theorem,” in: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, Stanford (2012); http://plato.stanford.edu/archives/win2012/entries/bell-theorem.

  9. Ph. H. Eberhard, Phys. Rev. A, 477, 750 (1993).

    Google Scholar 

  10. N. D. Mermin, “The EPR experiment – thoughts about the ‘loophole,’ ” in: D. M. Greenberger (Ed.), Techniques and Ideas in Quantum Measurement Theory, New York Academy of Science, New York (2006), p. 422.

    Google Scholar 

  11. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Aspect, Three experimental tests of Bell inequalities by the measurement of polarization correlations between photons, Ph. D Thesis, Orsay, France (1983).

  13. A. Aspect, “Bell’s theorem: The naive view of an experimentalist,” arXiv:quant-ph/0402001.

  14. G. Jaeger, Entanglement, Information, and the Interpretation of Quantum Mechanics (The Frontiers Collection), Springer, Heidelberg-Berlin-New York (2009).

    Book  Google Scholar 

  15. G. Jaeger, A. Khrennikov, M. Schlosshauer, and G. Weihs (Eds.), Advances in Quantum Theory, AIP Conf. Proc., 1327 (2011).

  16. A. Khrennikov (Ed.), Quantum Theory: Reconsideration of Foundations-5, AIP Conf. Proc., 1232 (2010).

  17. L. Accardi, G. Adenier, C. A. Fuchs, et al. (Eds.), Foundations of Probability and Physics-5, AIP Conf. Proc., 1101 (2009).

  18. G. Adenier, A. Yu. Khrennikov, P. Lahti, et al. (Eds.), Quantum Theory: Reconsideration of Foundations-4, AIP Conf. Proc., 962 (2008).

  19. G. Adenier, C. Fuchs, and A. Khrennikov (Eds.), Foundations of Probability and Physics-4, AIP Conf. Proc., 889 (2007).

  20. A. Khrennikov, Contextual Approach to Quantum Formalism, Springer, Berlin-Heidelberg-New York (2009).

    Book  MATH  Google Scholar 

  21. S. Ramelow, “Quantum theory: Advances and problems,” Talk at A. Marcus Wallenberg Symposium “Quantum Theory: Advances and Problems” (Växjö, Sweden, 10–13 June, 2013).

  22. J.-A. Larsson, M. Giustina, J. Kofler, et al., “Bell violation with entangled photons, free of the coincidence-time loophole,” arXiv.org/abs/1309.0712.

  23. D. Schmid, T.-Y. Huang, R. Dirks, et al., “Polarization-dependent focusing,” Talk at the Workshop “Quantum Information and Measurement” (Rochester, New York, 17–20 June 2013).

  24. S. V. Polyakov, E. B. Flagg, T. Thomay, and G. S. Solomon, AIP Conf. Proc., 1508, 67 (2012).

    Article  ADS  Google Scholar 

  25. G. Weihs, T. Jennewein, C. Simon, et al., Phys. Rev. Lett., 81, 5039 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, et al., Nature Phys., 3, 481 (2007).

    Article  ADS  Google Scholar 

  27. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, Phys. Rev. Lett., 87, 167903 (2001).

    Article  ADS  Google Scholar 

  28. O. Landry, J. A. W. van Houwelingen, A. Beveratos, et al., J. Opt. Soc. Am. B, 24,398 (2007).

    Article  ADS  Google Scholar 

  29. H. Hübel, M. R. Vanner, T. Lederer, et al., Opt. Exp., 15, 7853 (2007).

    Article  ADS  Google Scholar 

  30. Q. Zhang, H. Takesue, S. W. Nam, et al., Opt. Exp., 16, 5776 (2008).

    Article  ADS  Google Scholar 

  31. I. Marcikic, H. de Riedmatten, W. Tittel, et al., Phys. Rev. Lett., 93, 180502 (2004).

    Article  ADS  Google Scholar 

  32. H. Takesue, Opt. Exp., 14, 3453 (2006).

    Article  ADS  Google Scholar 

  33. T. Honjo, H. Takesue, H. Kamada, et al., Opt. Exp., 15, 13957 (2007).

    Article  ADS  Google Scholar 

  34. A. Yu. Khrennikov and I. V. Volovich, “Local realism, contextualism and loopholes in Bell’s experiments,” in: A. Yu. Khrennikov (Ed.), Foundations of Probability and Physics-2, Ser. Math. Model., Växjö University Press, Växjö, Sweden (2002), Vol. 5, p. 325.

    Google Scholar 

  35. T. Ishiwatari, A. Khrennikov, B. Nilsson, and I. Volovich, “Quantum field theory and distance effects for polarization correlations in waveguides,” in: The third Conference on Mathematical Modeling of Wave Phenomena/20th Nordic Conference on Radio Science and Communications, AIP Conf. Proc., 1106, 276 (2009).

  36. A. Khrennikov, B. Nilsson, S. Nordebo, and I. Volovich, “Distance dependence of entangled photons in waveguides,” in: Conference FPP6 – Foundations of Probability and Physics-6, AIP Conf. Proc., 1424, 262 (2012).

  37. A. Khrennikov, B. Nilsson, S. Nordebo, and I. Volovich. Phys. Scr., 85, 06505 (2012).

    Article  Google Scholar 

  38. A. Khrennikov, B. Nilsson, S. Nordebo, and I. Volovich, “On the quantization of the electromagnetic field of a layered dielectric waveguide,” in: Conference QTRF6 – Quantim Theory: Reconsideration of Foundations–6, AIP Conf. Proc., 1508, 285 (2012).

  39. J. A. Nelder and R. Mead, Comput. J., 7, 313 (1965).

    Article  Google Scholar 

  40. D. J. Schroeder, Astronomical Optics, 2nd ed., Academic Press (1999).

  41. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging, 2nd ed., Lippincott Williams and Wilkins, Philadelphia (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Additional information

†Dedicated to the 50th anniversary of Bell’s theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, P., Khrennikov, A. Modeling Tests Based on the Eberhard Inequality . J Russ Laser Res 36, 2–16 (2015). https://doi.org/10.1007/s10946-015-9471-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9471-6

Keywords

Navigation